Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn
Xem chi tiết
Tẫn
30 tháng 4 2019 lúc 16:47

Lần sau chép đề cẩn thận nhé. Sai tùm lum.

a, ΔAHB = ΔAHC.

Xét hai tam giác vuông AHB và AHC có:

AB = AC (hai cạnh bên)

^B = ^C (hai góc ở đáy)

Do đó: ΔAHB =  ΔAHC (cạnh huyền - góc nhọn)

b, ΔDHC cân. DM//AH. (sửa M là trung điểm HC nhé ! )

Vì HD//BA (gt) => ^B = ^H1 (đồng vị) 

Mà ^B = ^C => ^H1 = ^C => ΔDHC cân tại D (hai góc ở đáy)

Xét ΔDHM và ΔDCM có:

DH = DC (hai cạnh bên)

HM = MC (M là trung điểm của HC)

DM : chung

Do đó: ΔDHM = ΔDCM (c.c.c)

=> ^M1 = ^M2 (hai góc tương ứng)

Mà ^M1 + ^M2 = 180o (kề bù)

=> ^M1 = ^M2 = 180o : 2 = 90o hay DM ⊥ BC.

Vậy DM // AH (cùng vuông góc với BC).

c, G là trọng tâm ΔABC. AH + BD > 3HD.

Ta có: ^H2 = ^A1 (so le trong)

Mà ^A1 = ^A2 (hai góc tương ứng)

=> ^H2 = ^A2 => ΔHDA cân tại D (hai góc ở đáy) 

=> DA = DH (hai cạnh bên)

Vì DH = DC (hai cạnh bên)

     DA = DH (hai cạnh bên)

=> DA = DC 

=> BD là trung tuyến ứng với cạnh bên AC.

Vì BH = HC (hai cạnh tương ứng) => AH là trung tuyến ứng với cạnh đáy BC.

Mà AC cắt BC tại G => CG là trung tuyến ứng với cạnh bên AB

=> G là trọng tâm của  ΔABC.

Tẫn
30 tháng 4 2019 lúc 17:05

A C B H M 1 2 D 1 1 2 2 1 2

Lê Ngọc Hà Anh
Xem chi tiết
Đào Thị Thu Vân
Xem chi tiết
Barbie
25 tháng 6 2016 lúc 15:15

mai mới là chủ nhật thôi à

Yukino Quỳnh Trang
25 tháng 6 2016 lúc 15:28

lười qá, thấy đề dài nên nản

Đạt Nguyễn Thành
Xem chi tiết
sakura
Xem chi tiết
Tâm Trần Huy
23 tháng 1 2017 lúc 10:01

A B C M N O

a) xét tam giác vuông NCA và tam giác vuông MAC có

AC là cạnh huyền chung

góc A  = góc C ( tam giác ABC cân tại B )

do đó tam giác NCA = tam giác MAC (cạnh huyền - góc nhọn )

suy ra NA = MC ( 2 cạnh tương ứng )

ta có BA = BC ( tam giác cân )

 NA = MC (cmt)

suy ra BA-NA=BC-MC ( vì N nằm giữa B và A , M nằm giữa B và C )

hay BN = BM 

xét \(\Delta BNO\)và \(\Delta BMO\)có 

BO là cạnh huyền chung

 BN = BM (cmt)

do đó \(\Delta BNO=\Delta BMO\)( cạnh huyền - cạnh góc vuông )

suy ra \(\widehat{NBO}=\widehat{MBO}\)( 2 góc tương ứng )

mà tia BO nằm giữa 2 tia BA và BC 

suy ra tia Bo là phân giác góc ABC

Hoàng Mỹ Ly
Xem chi tiết
Vanlacongchua
18 tháng 12 2018 lúc 16:57

, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")

Giải : Từ giả thiết ta có 

D là trung điểm của AB và MO

,E là trung điểm của AC và ON

=> ED là đường trung bình của cả hai tam giác ABC và OMN

Áp dụng định lý đường trung bình vào  tam giác trên ,ta được

\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)

Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành

Vanlacongchua
18 tháng 12 2018 lúc 17:06

Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@

Vanlacongchua
18 tháng 12 2018 lúc 19:28

Bài 1 : tự viết giả thiết kết luận và vẽ hình

Do N là trung điểm của BC theo giả thiết nên chọn BC làm một đường chéo.Vẽ thêm điểm E sao cho D là trung điểm của ME thì tứ giác BMCE có hai đường chéo chắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành

=> \(BM//CE\) và \(BM=CE\)

Ta có : MN \(\perp\) với hai tia phân giác của góc A nên tam giác AMN cân ở A.

Áp dụng tính chất về góc của tam giác cân AMN ,tính chất của hai góc đối đỉnh của ở N và tính chất góc so le của BM // CE ,ta được

\(\hept{\begin{cases}\widehat{M1}=\widehat{N2},\widehat{N1}=\widehat{N2}\\\widehat{M1}=\widehat{E1}\end{cases}}\Rightarrow\widehat{N1}=\widehat{E1}\Rightarrow CE=CN\) 

(Vì trong một tam giác đối diện với hai góc bằng nhau là 2 cạnh bằng nhau)

Từ (1) và (2) => BM=CN    (đpcm )

Pham Thi Phuong Thao
Xem chi tiết
Nguyễn Hà Anh
Xem chi tiết
Seulgi
3 tháng 5 2019 lúc 12:24

a, xét tam giác AEC và tam giác ADB có : AB = AC do tam giác ABC cân tại A (gt)

góc AEC = góc ADB= 90 do ... 

góc A chung

=> tam giác AEC = tam giác ADB (ch - gn)

zZz Cool Kid_new zZz
3 tháng 5 2019 lúc 20:21

a.

Xét \(\Delta AEC\) và  \(\Delta ADB\) có:AB=AC(cạnh tam giác cân);\(\widehat{AEC}=\widehat{ADB}=90^0\);\(\widehat{A}\) chung

\(\Rightarrow\Delta AEC=\Delta ADB\left(c.g.c\right)\)

b.

Do trung tuyến CD và BM cắt nhau tại I nên I là trọng tâm.

\(\Rightarrow CI=\frac{2}{3}CD\)

Áp dụng định lý py-ta-go vào tam giác vuông BDC ta có:

\(BC^2=BD^2+DC^2\)

\(\Rightarrow CD^2=BC^2-BD^2\)

\(\Rightarrow CD^2=100-64\)

\(\Rightarrow CD=6\) vì \(CD>0\)

\(\Rightarrow CI=\frac{2}{3}\cdot6=4\)

c

Xét \(\Delta BEC\) và \(\Delta BDC\) có:\(\widehat{BEC}=\widehat{BDC}=90^0\);BC chung;\(\widehat{EBC}=\widehat{DCB}\)

\(\Rightarrow\Delta BEC=\Delta BDC\left(c.g.c\right)\Rightarrow BE=DC\Rightarrow AE=AD\)

Xét \(\Delta HAE\) và  \(\Delta HAD\) có:\(\widehat{AEH}=\widehat{ADH}=90^0;AH\)chung;\(AE=AD\)

\(\Rightarrow\Delta HAE=\Delta HAD\left(c.g.c\right)\Rightarrow AH\) là đường phân giác.

Mặt khác tam giác ABC cân nên AH đồng thời là đường cao (nếu bạn chưa học cái này thì có thể CM vuông góc bằng cách tạo giao điểm giữa AH và BC)

Mike
28 tháng 5 2019 lúc 9:06

a, xét tam giác AEC và tam giác ADB có : AB = AC do tam giác ABC cân tại A (gt)

góc AEC = góc ADB= 90 do ... 

góc A chung

=> tam giác AEC = tam giác ADB (ch - gn)

Duc Anh
Xem chi tiết
Yuzuri Yukari
25 tháng 7 2016 lúc 8:46

mik trả lời câu trên rùi nha hihi

Duc Anh
25 tháng 7 2016 lúc 9:44

???