Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Khắc Minh Hoàng
Xem chi tiết
Khôi 2k9
11 tháng 12 2020 lúc 21:17

a) Vì \(\frac{a}{b}>1\Rightarrow a>b\Rightarrow a-b>0\)

Xét hiệu : \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)-b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+ac-ba-bc}{b\left(b+c\right)}=\frac{ac-bc}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}\)

Mà a-b>0 (cmt) suy ra :\(\frac{a}{b}-\frac{a+c}{b+c}>0\Leftrightarrow\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)

b) Chứng minh tương tự

Khách vãng lai đã xóa
Võ Khắc Minh Hoàng
11 tháng 12 2020 lúc 20:39

2/Cho b,d>0

Chứng minh \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Khách vãng lai đã xóa
Lữ Hùng Hổ
Xem chi tiết
Dương Lam Hàng
Xem chi tiết
Hồ Thu Giang
16 tháng 6 2016 lúc 15:08

1, 

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

<=> (a - 2)(b + 3) = (a + 2)(b - 3)

<=> ab + 3a - 2b - 6 = ab - 3a + 2b - 6

<=> 3a - 2b = -3a + 2b

<=> 6a = 4b

<=> 3a = 2b 

<=> \(\frac{a}{2}=\frac{b}{3}\)(Đpcm)

Hồ Thu Giang
16 tháng 6 2016 lúc 15:12

2,

Có:

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(=\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)

\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\)

=> bz - cy = 0

=> bz = cy

=> \(\frac{b}{y}=\frac{c}{z}\)(1)

=> cx - az = 0

=> cx = az

=> \(\frac{c}{z}=\frac{a}{x}\)(2)

Từ (1) và (2)

=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)(Đpcm)

Nguyễn Mỹ Duyên
Xem chi tiết
Nguyễn Minh Tuyền
Xem chi tiết
vũ đình khánh vy
12 tháng 6 2017 lúc 12:05

do abc=1 nên \(\frac{a}{ab+a+1}\)=\(\frac{a}{ab+a+abc}\)=\(\frac{a}{a\left(bc+b+1\right)}\)=\(\frac{1}{bc+b+1}\)

\(\frac{c}{ac+c+1}\)=\(\frac{bc}{abc+bc+b}\)(nhân cả 2 vế cho b)=\(\frac{bc}{bc+b+1}\)

=>\(\frac{a}{ab+a+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{c}{ac+c+1}\)=\(\frac{bc+b+1}{bc+b+1}\)=1

Nguyễn Khánh Ly
Xem chi tiết
Hà Trang
22 tháng 3 2017 lúc 22:22

Có: 1+x = \(\frac{a+b+a-b}{a+b}\) = \(\frac{2a}{a+b}\)

Tương tự, 1 + y = \(\frac{2b}{b+c}\)

1 + z = \(\frac{2c}{c+a}\)

1 - x = \(\frac{q+b-a+b}{a+b}\) = \(\frac{2a}{a+b}\)

Tương tự như thế rồi nhân (1+x), (1+y), (1+z) với nhau; (1-z), (1-y), (1-z) với nhau

Trần Lê Anh Quân
Xem chi tiết
lê duy mạnh
6 tháng 10 2019 lúc 20:11

bạn nhân ra hết cho mk

Trần Lê Anh Quân
6 tháng 10 2019 lúc 20:50

thanks bạn nhiều nha

Nguyễn Ngọc Linh
Xem chi tiết
Lê Nhật Khôi
2 tháng 1 2018 lúc 7:50

????????????????????????????

Huỳnh Xuân Mai
2 tháng 1 2018 lúc 8:52

Đề có sai không cậu ơi??

Tinz
20 tháng 11 2019 lúc 21:04

hơi sai đó bn

Khách vãng lai đã xóa
titanic
Xem chi tiết
Đinh Đức Hùng
15 tháng 2 2017 lúc 13:20

\(\frac{a+c}{b+c}>\frac{a}{b}\)

\(\Leftrightarrow b\left(a+c\right)>a\left(b+c\right)\)

\(\Leftrightarrow ab+bc>ab+ac\)

\(\Leftrightarrow bc>ac\)

\(\Leftrightarrow b>a\) 

\(\Rightarrow\frac{a}{b}< 1\) (luôn đúng)