Chứng minh: Nếu a > b thì \(\frac{a}{b}< \frac{a+1}{b+1}\)
1/Cho a,b,c là các số dương chứng minh
a. Nếu \(\frac{a}{b}>1\)thì \(\frac{a}{b}>\frac{a+c}{b+c}\)
b. Nếu \(\frac{a}{b}< 1\)thì \(\frac{a}{b}< \frac{a+c}{b+c}\)
a) Vì \(\frac{a}{b}>1\Rightarrow a>b\Rightarrow a-b>0\)
Xét hiệu : \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)-b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+ac-ba-bc}{b\left(b+c\right)}=\frac{ac-bc}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}\)
Mà a-b>0 (cmt) suy ra :\(\frac{a}{b}-\frac{a+c}{b+c}>0\Leftrightarrow\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
b) Chứng minh tương tự
2/Cho b,d>0
Chứng minh \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
chứng minh rằng nếu a+b+c=0 thì \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=0\)
1/ Chứng minh rằng nếu \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)thì \(\frac{a}{2}=\frac{b}{3}\)
2/ Chứng minh rằng: Nếu \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}thì\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
1,
\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)
<=> (a - 2)(b + 3) = (a + 2)(b - 3)
<=> ab + 3a - 2b - 6 = ab - 3a + 2b - 6
<=> 3a - 2b = -3a + 2b
<=> 6a = 4b
<=> 3a = 2b
<=> \(\frac{a}{2}=\frac{b}{3}\)(Đpcm)
2,
Có:
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(=\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\)
=> bz - cy = 0
=> bz = cy
=> \(\frac{b}{y}=\frac{c}{z}\)(1)
=> cx - az = 0
=> cx = az
=> \(\frac{c}{z}=\frac{a}{x}\)(2)
Từ (1) và (2)
=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)(Đpcm)
Chứng minh nếu a+b =1 (a, b # 0) thì
\(\frac{b}{a^3-1}-\frac{a}{b^3-1}=\frac{2\left(a-b\right)}{a^2b^2+3}\)
Chứng minh rằng : Nếu abc=1 thì \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)
do abc=1 nên \(\frac{a}{ab+a+1}\)=\(\frac{a}{ab+a+abc}\)=\(\frac{a}{a\left(bc+b+1\right)}\)=\(\frac{1}{bc+b+1}\)
\(\frac{c}{ac+c+1}\)=\(\frac{bc}{abc+bc+b}\)(nhân cả 2 vế cho b)=\(\frac{bc}{bc+b+1}\)
=>\(\frac{a}{ab+a+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{c}{ac+c+1}\)=\(\frac{bc+b+1}{bc+b+1}\)=1
Chứng minh rằng nếu \(x=\frac{a-b}{a+b};y=\frac{b-c}{b+c};z=\frac{c-a}{c+a}\)
Thì ( 1+x)(1+y)(1+z) = (1-x)(1-y)(1-z)
Có: 1+x = \(\frac{a+b+a-b}{a+b}\) = \(\frac{2a}{a+b}\)
Tương tự, 1 + y = \(\frac{2b}{b+c}\)
1 + z = \(\frac{2c}{c+a}\)
1 - x = \(\frac{q+b-a+b}{a+b}\) = \(\frac{2a}{a+b}\)
Tương tự như thế rồi nhân (1+x), (1+y), (1+z) với nhau; (1-z), (1-y), (1-z) với nhau
Chứng minh rằng nếu (a2-bc)(b-abc)=(b2-ac)(a-abc)= các số a,b,c,a-b khác 0 thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c\)
Chứng minh rằng nếu \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)và a+b+c=2 thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Cho a,b,c >0.Chứng minh nếu\(\frac{a}{b}< 1\)thì\(\frac{a+c}{b+c}>\frac{a}{b}\)
\(\frac{a+c}{b+c}>\frac{a}{b}\)
\(\Leftrightarrow b\left(a+c\right)>a\left(b+c\right)\)
\(\Leftrightarrow ab+bc>ab+ac\)
\(\Leftrightarrow bc>ac\)
\(\Leftrightarrow b>a\)
\(\Rightarrow\frac{a}{b}< 1\) (luôn đúng)