Cho A=1+1/2+1/3+...+1/4034, B=1+1/3+1/5+...+1/4033. So sánh A/B với 1+2017/2018
Cho A= 1 + \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4034}\); B = 1 + \(\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4033}\)
So sánh \(\dfrac{A}{B}\)với 1\(\dfrac{2017}{2018}\)
Cho A = 1 + 1/2 + 1/3 + ..... + 1/4034 và B =1 + 1/3 +1/5 + .... + 1/4033
So sánh A/B với \(1\frac{2017}{2018}\)
Cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4034},B=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{4033}\). So sánh A/B với \(1\frac{2017}{2018}\)
Cho \(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{4034},B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4033}\).So sánh \(\frac{A}{B}\)với\(\frac{4035}{2018}\)
A=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4034}\)
B=\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4033}\)
So sánh \(\frac{A}{B}\)với \(1\frac{2017}{2018}\)
CÁC BẠN GIÚP MÌNH GIẢI BÀI NÀY NHA CÁC BẠN GIẢI CHI TIẾT VÀ CHỈ CHO MÌNH CÁCH LÀM BÀI NÀY VỚI NHA MÌNH CẢM ƠN
Cho \(P=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{4034}\) và \(Q=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4033}\)
CMR: \(\frac{P}{Q}< 1\frac{2017}{2018}\)
Cho A = 2017 mũ 2018 + 1 phần 2017 mũ 2018 - 3 và b bằng 2017 mũ 2018 - 1 phần 2017 mũ 2018 - 5 hãy so sánh a và b
\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)
Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)
Mà\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)và\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)
Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)
Vậy A>B
Cho A= \(\frac{2017^{2018}+1}{2017^{2018}-3}\)
B= \(\frac{2017^{2018}-1}{2017^{2018}-5}\)
Hãy so sánh A với B
Giai pt:
\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right).3x=1+\dfrac{2019}{2}+\dfrac{2020}{3}+...+\dfrac{4033}{2016}+\dfrac{4034}{2017}\)