Hình thang cân ABCD có AB//CD.Gọi O là giao điểm của 2 đường chéo. CMR: OA=OB, OC=OD
Cho hình thang cân ABCD có AB//CD, o là giao điểm của hai đường chéo, e là đường thẳng chứa cạnh bên AD và BC. CMR:
a, OA=OB, OC=OD
b, CM: EO là đường trung trực của 2 đáy hình thang ABCD
a: Xét ΔADC và ΔBCD có
AD=BC
\(\hat{ADC}=\hat{BCD}\) (ABCD là hình thang cân)
DC chung
Do đó: ΔADC=ΔBCD
=>\(\hat{ACD}=\hat{BDC}\)
=>\(\hat{OCD}=\hat{ODC}\)
=>OC=OD
ta có: OC+OA=AC
OD+OB=BD
mà OC=OA và AC=BD
nên OA=OB
b: Xét ΔECD có \(\hat{ECD}=\hat{EDC}\)
nên ΔECD cân tại E
=>EC=ED
=>E nằm trên đường trung trực của CD(3)
Ta có: OC=OD
=>O nằm trên đường trung trực của CD(4)
Từ (3),(4) suy ra EO là đường trung trực của CD
Ta có: EA+AD=ED
EB+BC=EC
mà AD=BC và ED=EC
nên EA=EB
=>E nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra EO là đường trung trực của AB
Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA = OB, OC = OD.

Xét ∆ ADC và ∆ BCD, ta có:
AD = BC (tính chất hình thang cân)
∠ (ADC) = ∠ (BCD) (gt)
DC chung
Do đó: ∆ ADC = ∆ BCD (c.g.c) ⇒ ∠ C 1 = ∠ D 1
Trong ∆ OCD ta có: ∠ C 1 = ∠ D 1 ⇒ ∆ OCD cân tại O ⇒ OC = OD (1)
AC = BD (tính chất hình thang cân) ⇒ AO + OC = BO + OD (2)
Từ (1) và (2) suy ra: AO = BO.
hình thang cân ABCD có AB // CD , O là giao điểm của hai đường chéo. Chứng minh rằng OA =OB , OC = OD
Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA = OB, OC = OD ?
hình thang cân ABCD có AB//CD , O là giao điểm của hai đường chéo .Chứng minh rằng OA=OB, OC=OD
Xét tam giác OAD và tam giác OBC ta có:
góc OAD = góc OCB (hai góc so le trong, AB//CD)
AD = BC (Vì hình thang cân có hai cạnh bên bằng nhau)
góc ODA = góc OBC (hai góc so le trong, AB//CD)
=> tam giác OAD = tam giac OBC (g-c-g)
=> OA=OB
chứng minh tương tự ta sẽ được OD=OC
Bài làm :
Xét tam giác ABC và tam gác BAD có :
AB cạnh chung
BC = AC ( ABCD httg cân )
AC = BD ( 1 ) ( ABCD httg cân )
\(\Rightarrow\)tam giác ABC = tam giác BAD ( c - c - c )
\(\Rightarrow\widehat{A1}\)= \(\widehat{D1}\)
\(\Rightarrow\)Tam giác OAB cân tại O
\(\Rightarrow\)OA = OB ( 2 )
ta có : OA + OC = AC ( 3 )
OB + OD = BD ( 4 )
Từ ( 1 ) : ( 2 ) ; ( 3 ) ; ( 4 ) suy ra OC = OD
Cho hình thang cân ABCD có AD // BC, AB = DC. gọi O là giao điểm 2 đường chéo AC và BD . C/m OA = OC OB = OD
Bài 1: cho hình thang cân ABCD có AB<CD,o là giao điểm của hai đường chéo,E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC.Cm
a,OA=OB,OC=OD
b,EO là đường trung trực của hai đáy hình thang ABCD
a ) Xét ADC và BCD, ta có:
AD = BC (tính chất hình thang cân)
(ADC) = (BCD) (gt)
DC chung
Do đó: ADC = BCD (c.g.c) ⇒ =
Trong OCD ta có: = ⇒ OCD cân tại O ⇒ OC = OD (1)
AC = BD (tính chất hình thang cân) ⇒ AO + OC = BO + OD (2)
Từ (1) và (2) suy ra: AO = BO.
b)

⇒ ∆ OCD cân tại O
⇒ OC = OD
⇒ OA + AD = OB + BC
Mà AD = BC (tính chất hình thang cân)
⇒ OA = OB
Xét ∆ ADC và ∆ BCD :
AD = BC (chứng minh trên)
AC = BD (tính chất hình thang cân)
CD cạnh chung
Do đó: ∆ ADC = ∆ BCD (c.c.c)
⇒ ∆ EDC cân tại E
⇒ EC = ED nên E thuộc đường trung trực của CD
OC = OD nên O thuộc đường trung trực của CD
E≢ O. Vậy OE là đường trung trực của CD.
BD = AC (chứng minh trên)
⇒ EB + ED = EA + EC mà ED = EC
⇒ EB = EA nên E thuộc đường trung trực AB
E≢ O. Vậy OE là đường trung trực của AB.
Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:
a) OA=OB , OC=OD
b) EO là đường trung trực của hai đáy hình thang ABCD.
Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ
a) Chứng minh ABCD là hình thang cân
b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.
Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE
a) Tứ giác BDEC là hình gì ? Vì sao?
b) Các điểm D,E ở vị trí nào thì BD=DE=EC?
Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn
Bài 3:
a: Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC và \(\hat{DBC}=\hat{ECB}\) (ΔABC cân tại A)
nên BDEC là hình thang cân
b: BDEC là hình thang cân
=>BD=EC
DB=DE
=>ΔDBE cân tại D
=>\(\hat{DEB}=\hat{DBE}\)
mà \(\hat{DEB}=\hat{EBC}\) (hai góc so le trong, DE//BC)
nên \(\hat{DBE}=\hat{CBE}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
ED=EC
=>ΔEDC cân tại E
=>\(\hat{EDC}=\hat{ECD}\)
mà \(\hat{EDC}=\hat{BCD}\) (hai góc so le trong, DE//BC)
nên \(\hat{ECD}=\hat{BCD}\)
=>\(\hat{ACD}=\hat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác kẻ từ C xuống AB
Bài 2:
a: ΔCAD vuông tại C
=>\(\hat{CAD}+\hat{CDA}=90^0\)
=>\(\hat{CAD}=90^0-60^0=30^0\)
AC là phân giác của góc BAD
=>\(\hat{BAD}=2\cdot\hat{CAD}=60^0\)
Xét hình thang ABCD có \(\hat{BAD}=\hat{CDA}\left(=60^0\right)\)
nên ABCD là hình thang cân
b: BC//AD
=>\(\hat{BCA}=\hat{CAD}\) (hai góc so le trong)
mà \(\hat{CAD}=\hat{BAC}\) (AC là phân giác của góc BAD)
nên \(\hat{BCA}=\hat{BAC}\)
=>BC=BA
=>BC=BA=CD
Xét ΔCAD vuông tại C có cos CDA=\(\frac{CD}{DA}\)
=>\(\frac{CD}{DA}=cos60=\frac12\)
=>CD=0,5AD
=>BC=BA=CD=0,5AD
Chu vi hình thang ABCD là 20cm
=>AB+BC+CD+DA=20
=>0,5AD+0,5AD+0,5AD+AD=20
=>2,5AD=20
=>AD=8(cm)
Bài 1:
a: Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
Do đó: ΔADC=ΔBCD
=>\(\hat{ACD}=\hat{BDC}\)
=>\(\hat{ODC}=\hat{OCD}\)
=>OD=OC
Ta có: OD+OB=BD
OC+OA=AC
mà BD=AC và OD=OC
nên OB=OA
b: Xét ΔEDC có AB//DC
nên \(\frac{EA}{AD}=\frac{EB}{BC}\)
mà AD=BC
nên EA=EB
=>E nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra EO là đường trung trực của AB
Ta có: EA+AD=ED
EB+BC=EC
mà EA=EB và AD=BC
nên ED=EC
=>E nằm trên đường trung trực của DC(3)
Ta có: OC=OD
=>O nằm trên đường trung trực của CD(4)
Từ (3),(4) suy ra EO là đường trung trực của CD
Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:
a) OA=OB , OC=OD
b) EO là đường trung trực của hai đáy hình thang ABCD.
Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ
a) Chứng minh ABCD là hình thang cân
b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.
Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE
a) Tứ giác BDEC là hình gì ? Vì sao?
b) Các điểm D,E ở vị trí nào thì BD=DE=EC?
Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn
Bài 3:
a: Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC và \(\hat{DBC}=\hat{ECB}\) (ΔABC cân tại A)
nên BDEC là hình thang cân
b: BDEC là hình thang cân
=>BD=EC
DB=DE
=>ΔDBE cân tại D
=>\(\hat{DEB}=\hat{DBE}\)
mà \(\hat{DEB}=\hat{EBC}\) (hai góc so le trong, DE//BC)
nên \(\hat{DBE}=\hat{CBE}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
ED=EC
=>ΔEDC cân tại E
=>\(\hat{EDC}=\hat{ECD}\)
mà \(\hat{EDC}=\hat{BCD}\) (hai góc so le trong, DE//BC)
nên \(\hat{ECD}=\hat{BCD}\)
=>\(\hat{ACD}=\hat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác kẻ từ C xuống AB
Bài 2:
a: ΔCAD vuông tại C
=>\(\hat{CAD}+\hat{CDA}=90^0\)
=>\(\hat{CAD}=90^0-60^0=30^0\)
AC là phân giác của góc BAD
=>\(\hat{BAD}=2\cdot\hat{CAD}=60^0\)
Xét hình thang ABCD có \(\hat{BAD}=\hat{CDA}\left(=60^0\right)\)
nên ABCD là hình thang cân
b: BC//AD
=>\(\hat{BCA}=\hat{CAD}\) (hai góc so le trong)
mà \(\hat{CAD}=\hat{BAC}\) (AC là phân giác của góc BAD)
nên \(\hat{BCA}=\hat{BAC}\)
=>BC=BA
=>BC=BA=CD
Xét ΔCAD vuông tại C có cos CDA=\(\frac{CD}{DA}\)
=>\(\frac{CD}{DA}=cos60=\frac12\)
=>CD=0,5AD
=>BC=BA=CD=0,5AD
Chu vi hình thang ABCD là 20cm
=>AB+BC+CD+DA=20
=>0,5AD+0,5AD+0,5AD+AD=20
=>2,5AD=20
=>AD=8(cm)
Bài 1:
a: Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
Do đó: ΔADC=ΔBCD
=>\(\hat{ACD}=\hat{BDC}\)
=>\(\hat{ODC}=\hat{OCD}\)
=>OD=OC
Ta có: OD+OB=BD
OC+OA=AC
mà BD=AC và OD=OC
nên OB=OA
b: Xét ΔEDC có AB//DC
nên \(\frac{EA}{AD}=\frac{EB}{BC}\)
mà AD=BC
nên EA=EB
=>E nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra EO là đường trung trực của AB
Ta có: EA+AD=ED
EB+BC=EC
mà EA=EB và AD=BC
nên ED=EC
=>E nằm trên đường trung trực của DC(3)
Ta có: OC=OD
=>O nằm trên đường trung trực của CD(4)
Từ (3),(4) suy ra EO là đường trung trực của CD