Cho phân số \(\frac{a}{b}\) < 1. Hãy so sánh phân số \(\frac{a}{b}\) và \(\frac{a+m}{b+m}\) (m là số tự nhiên khác 0)
Các anh chị giúp em nhanh nha!gấp lắm!
Cho phân số \(\frac{a}{b}< 1\).Hãy so sánh \(\frac{a}{b}\)với phân số \(\frac{a+m}{b+m}\)(m là số tự nhiên khác 0 )
Chỉ cho mình với có cách giải nha
Theo đề bài ta có \(\frac{a}{b}< 1\).
\(\Rightarrow\frac{a+m}{b+m}< 1\)(vì \(\frac{a}{b}< 1\))
Khi \(\frac{a+m}{b+m}< 1\)ta có \(\frac{a}{b}+m\)
\(\Leftrightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
\(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow am< bm\Rightarrow ab+am< ab+bm\Rightarrow a\left(b+m\right)< b\left(a+m\right)\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có
A+m/b+m
Mà a/b<1
> a<a+m
B<b+m
> a/b<a+m/b+m
Cho phân số \(\frac{a}{b}\) < 1. Hãy so sánh \(\frac{a}{b}\) với phần số \(\frac{a+m}{b+m}\)(m là số tự nhiên khác 0).
Ta có: \(\frac{a+m}{b+m}\) = \(\frac{\left(a+m\right).b}{b\left(b+m\right)}\) = \(\frac{ab+bm}{b\left(b+m\right)}\) và \(\frac{a}{b}\) = \(\frac{a.\left(b+m\right)}{b\left(b+m\right)}\)= \(\frac{ab+am}{b\left(b+m\right)}\)
Ta có: \(\frac{a}{b}\) < 1 => a<b => am<bm ( m \(\ne\) 0) => ab+ am< ab+bm
=> \(\frac{ab+bm}{b\left(b+m\right)}\) > \(\frac{ab+am}{b\left(b+m\right)}\) => \(\frac{a+m}{b+m}\) > \(\frac{a}{b}\)
Cho phân số a/b > 1. Hãy so sánh phân số a/b và a+m / b+m.(m là số tự nhiên khác 0)
ta ví dụ a/b = 5/4
ta có 5/4 ... 5+1/4+1
= 5/4 ... 6/5
ta quy đồng được :5/4 = 25/20 ; 6/5 = 24/20
=> a/b > a+m/b+m
Ta có : a/b = a*(b+m)/b*(b+m) = ab+am/b*(b+m)
a+m/b+m = (a+m)*b/(b+m)*b = ab+bm/b*(b+m)
Vì a/b > 1 => a > b hay am > bm
Vậy ab+am/b*(b+m) > ab+bm/b*(b+m) Hay a/b > a+m/b+m
Cho phân số a/b > 1; a,b>0. Hãy so sánh 2 phân số a/b và a+m/b+m ( m là số tự nhiên khác 0)
\(\frac{a}{b}-\frac{a+m}{b+m}=\frac{ab+am-ab-bm}{b\left(b+m\right)}=\frac{m\left(a-b\right)}{b\left(b+m\right)}\)
\(\frac{a}{b}>1\Rightarrow a>b>0\)
Nếu \(m>0\)thì \(\frac{m\left(a-b\right)}{b\left(b+m\right)}>0\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\).
Nếu \(m< 0\)thì \(\frac{m\left(a-b\right)}{b\left(b+m\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\).
cho phân số a/b lớn hơn 10 . Hãy so sánh hai phân số a/b và a+m / b+m ( a cộng m phần b cộng m )
( m là số tự nhiên khác không )
các bạn giúp mk nha , mai mk phải nộp bài rồi
Cho phân số a / b > 1. Hãy so sánh phân số a/b và a + m / b + m.m là số tự nhiên khác 0.Giup mik với,huhu
Câu này lớp 7
Ta có : a/b > 1
=> a > b > 0
=> a ; b \(\in N\)
Ta có : \(\frac{a}{b}=\frac{a.\left(b+m\right)}{b\left(b+m\right)}=\frac{a.b+a.m}{b^2+b.m}\)
\(\frac{a+m}{b+m}=\frac{\left(a+m\right)b}{\left(b+m\right).b}=\frac{a.b+b.m}{b^2+b.m}\)
Vì a > b => ( a.b + a.m ) > ( a.b + b.m )
=> \(\frac{a.b+a.m}{b^2+b.m}>\frac{a.b+b.m}{b^2+b.m}\)
\(\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Không phải,câu này là toán nâng cao lớp 5 mà.Cô giáo mik in cho cả quyển.
Câu này lớp 7
Ta có : a/b > 1
=> a > b > 0
=> a ; b ∈N
Ta có : ab =a.(b+m)b(b+m) =a.b+a.mb2+b.m
a+mb+m =(a+m)b(b+m).b =a.b+b.mb2+b.m
Vì a > b => ( a.b + a.m ) > ( a.b + b.m )
=> a.b+a.mb2+b.m >a.b+b.mb2+b.m
⇒ab >a+mb+m
Cho a,b,c là các số tự nhiên khác 0.Hãy so sánh \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)với số 1
Vì a,b,c là các số tự nhiên khác 0 nên a,b,c > 0.
Do vậy a < a + b < a + b + c
b < b + c < a + b + c
c < c + a < a + b + c
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Cho phân số a/b<1 . Chứng minh rằng: \(\frac{a}{b}<\frac{a+m}{b+m}\) (m khác 0 ) ( a,b là số tự nhiên )
cho a,b,c,d là các số tự nhiên khác 0 và biểu thức:
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}\)
Hỏi M có giá trị là số tự nhiên hay không?Vì sao?
b)Tim các số tự nhiên x,y,z sao cho \(0< x\le y\le z\) và xy+yz+zx=xyz
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên