Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ngọc Phương
Xem chi tiết
Lightning Farron
19 tháng 8 2016 lúc 14:45

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\Leftrightarrow\frac{bk}{bk-b}=\frac{dk}{dk-d}\)

Xét VT \(\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)

Xét VP \(\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)

Từ (1) và (2) =>Đpcm

Linh Ngoc
Xem chi tiết
Lê Anh Dũng
Xem chi tiết
Vũ Công Hiếu
Xem chi tiết
Duy Pham
13 tháng 11 2016 lúc 20:55

Con hiếu bđ 7a4

Cô nàng cung Kim Ngưu
Xem chi tiết
Trà My
29 tháng 7 2016 lúc 9:36

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=>\(\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

Vậy ta có đpcm

--------

T cấm con Nhok _Yến Nhi 12 copy bài của t nữa đấy!

hatsune miku
29 tháng 7 2016 lúc 9:32

có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=> \(\frac{a}{c}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d}\)

k cho mik ha

Nguyễn Huệ Lam
29 tháng 7 2016 lúc 9:37

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có:

\(\frac{a}{b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)

\(\frac{c}{d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)

Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a}{a-b}=\frac{c}{c-d}\)

LinhKha789987
Xem chi tiết
duong gia huy
Xem chi tiết
Hồ My
Xem chi tiết
Thùy Lê Thị Thanh
Xem chi tiết
Le Thi Khanh Huyen
29 tháng 6 2016 lúc 13:39

a) \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\)

\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

b) Mình sửa lại là \(\frac{a}{a-b}=\frac{c}{c-d}\) nha!

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\)

\(\Rightarrow1-\frac{b}{a}=1-\frac{d}{c}\)

\(\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)