Cho biểu thức E= \(\frac{5-x}{x-2}\) . Tìm các giá trị nguyên của x để
E có giá trị nhỏ nhất
174. Cho biểu thức \(E=\frac{5-x}{x-2}\). Tìm các giá trị của x để:
a) E có giá trị nguyên
b) E có giá trị nhỏ nhất
a, \(E=\frac{5-x}{x-2}=\frac{3+2-x}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-1\)
Để E có giá trị nguyên <=> x - 2 \(\in\)Ư(3) = {1;-1;3;-3}
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, Để E có GTNN <=> \(\frac{3}{x-2}\) có GTNN <=> \(\frac{3}{2-x}\)có GTLN <=> 2 - x có GTNN <=> x = 1 (vì x \(\in\)Z; x < 2)
Lúc đó GTNN của E = \(\frac{3}{1-2}-1=-4\)(khi x = 1)
a/ E = \(-\left(\frac{x-2-3}{x-2}\right)=-1+\frac{3}{x-2}\)Để E \(\in Z\)thì \(x-2=\left\{1,2,3,-1,-2,-3\right\}\)Thay lần lượt vào ta có
\(\frac{3}{3}=1\left(TM\right)\)\(x=1\Rightarrow x-2=1\Rightarrow x=3\)(TM) Lần lượt thay các số vào sẽ tìm được x
b/ Để E Min Thì E= \(\frac{3}{x-2}\)đạt GTNN vậy A= x-2 đạt GTLN Hay \(x-2\le2\)Vậy dấu "=" Xảy ra khi x= 4
Vậy E đạt GTNN = 1/2 tại x=4
Để E nguyên thì 5 - x chia hết cho x - 2
=> 5 - x - 2 + 2 chia hết cho x - 2
<=> 3 - (x - 2) chia hết cho x - 2
=> 3 chia hết cho x - 2
=> x - 2 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
x - 2 | -3 | -1 | 1 | 3 |
x | -1 | 1 | 3 | 5 |
Bài 1:Tìm GTLN của biểu thức D=\(\frac{4}{\left(2x-3\right)^2+5}\)
Bài 2:Cho biểu thức E=\(\frac{5-x}{x-2}\)
Tìm các giá trị nguyên của x để
a) E có giá trị nguyên
b) E có giá trị nhỏ nhất
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
Cho biểu thức E = \(\frac{3-x}{x-1}\). Tìm các giá trị nguyên của x để :
a) E có giá trị nguyên
b) E có giá trị nhỏ nhất
1.
a,Tìm giá trị nhỏ nhất của biểu thức \(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
b, Tìm giá trị lớn nhất của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
2. Cho biểu thức \(E=\frac{3-x}{x-1}\). Tìm các giá trị nguyên của x để
a, E có giá trị nguyên
b, E có giá trị nhỏ nhất
trình bày cách làm nữa nha . làm dc 1 câu cũng dc nha
1.
a,Tìm giá trị nhỏ nhất của biểu thức \(C=\left(x+1\right)^2+\left(y+\frac{1}{3}\right)^2-10\)
b, Tìm giá trị lớn nhất của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
2. Cho biểu thức \(E=\frac{3-x}{x-1}\) . Tìm các giá trị nguyên của x để
a, E có giá trị nguyên
b, E có giá trị nhỏ nhất
trình bày cách làm nữa nha . làm dc 1 câu cũng dc nha
Bài 2. Cho biểu thức P= \(\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tìm giá trị của x để P= -4
d) Tìm các giá trị nguyên của x để \(\frac{1}{P}\)nhận giá trị nguyên
e) Với x> 0, tìm giá trị nhỏ nhất của biểu thức Q= P+\(\frac{x+25}{x+5}\)
a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)
\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)
d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)
Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)
a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)
\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)
d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)
\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng nhé
e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)
\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)
Cho biểu thức E = \(\frac{5-x}{x-2}\)
Tìm các giá trị x để E có giá trị nhỏ nhất
cho biểu thức E=5-x/x-2.Tìm các giá trị nguyên của x để
a]E có giá trị nguyên
b e có gias
trij nhỏ nhất
Cho Biểu Thức \(E=\frac{3-x}{x-1}\) Tìm Giá Trị Nguyên Của x Để:
a) E có Giá Trị Nguyên
b)E có Giá Trị Nhỏ Nhất
a) Ta có : \(x\ne1\)
Vì \(x\inℤ\Rightarrow\frac{3-x}{x-1}\inℤ\Leftrightarrow\hept{\begin{cases}3-x\inℤ\\x-1\inℤ\end{cases}}\)
Mà \(\frac{3-x}{x-1}=\frac{-x+3}{x-1}=\frac{-x+1+2}{x-1}=\frac{-\left(x-1\right)+2}{x-1}=-1+\frac{2}{x-1}\)
Lại có : \(-1\inℤ\Rightarrow E\inℤ\Leftrightarrow\frac{2}{x-1}\inℤ\Leftrightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)\)
\(\Rightarrow x-1\in\left\{\pm1;\pm2\right\}\)
Lập bảng xét 2 trường hợp ta có :
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) |
Vậy \(x\in\left\{2;0;3;-1\right\}\)