Cho ∆ ABCD biet AB//CD, goc D=65°, goc BCx=130°. Tinh goc A, goc B
1, Cho hinh thang ABCD (AB // CD ) co goc D =600
a, tinh goc A
b,tinh goc B ,C biet goc B/D=4/5
a, Do AB//CD nên góc D=góc kề vs góc A trong tam giác
goc A =180-60=120
b,do B/D=4/5 nên B/4=D/5 mà tổng các góc trong hình thang =360 nên góc B+D=180
B+D/4+5=180/9=20 nên góc B=80 góc D=100 nên góc C=60
1) Cho tu giac ABCD co AB=2,5cm; AD=4cm; BD=5cm; BC=8cm; CD=10cm. CMinh ABCD la hinh thang
3) Cho tam giac ABC co AB=4cm, D thuoc AC, AD=2cm, DC=6cm. Biet goc A=100, goc B-C=20. Tinh goc ABD
cho tứ giác ABCD biết goc A : goc B: goc C : goc D = 1:2:3:4
a) tinh cac goc cua tu giac ABCD
b) CM : AB song song voi CD
c) goi E la giao diem cua AD va BC . tinh cac goc cua tam giac CDE
Giup mik nhe!!!
De bai : Cho hinh thang ABCD (goc A= goc D= 900).Biet AB=10 cm,CD=30 cm,AD=35 cm.Lay E thuoc AD sao cho AE=15 cm. Tinh goc BEC?
cho tu giac abcd biet goc a: goc b: goc c: goc d =4:3:2:1
a) tinh cac goc cua tu giac abcd
b) cac tia phan giac cua goc c va goc d cat nhau tai e. cac duong phan giac cua goc ngoai tai ca dinh c va d cat nhau tai f. tinh goc ced va goc cfd
a) Ta có: \(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{D}}{1}\)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{D}}{1}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{4+3+2+1}=\frac{360}{10}=36\)
\(\Rightarrow\widehat{A}=144^0;\widehat{B}=108^0;\widehat{C}=72^0;\widehat{D}=36^0\)
Cho hinh thang can ABCD co AB//CD , BD la phan giac goc D va DB vuong goc voi BC . Biet AB =4 .Tinh chu vi hinh thang
Cho tu giac ABCD, biet goc B+ goc C = 2000., goc B+goc D=1800, goc C+goc D= 1200
a) Tinh cac goc cua tu giac
b) Cca tia phan giac cua goc A va goc B cat nhau tai I. CM: goc AIB = (goc C+ goc D)/2
Cho tam giac ABC = tam giac DEF. Biet goc A + goc B = 130 do, goc E = 55 do. Tinh cac goc cua moi tam giac.
Ta có: ΔABC = △DEF
=> ∠E = ∠B = 550 (2 góc tương ứng)
Suy ra ∠A + ∠B = 1300
=> ∠A = 1300 - 550 = 750
Trong △ABC, t/có:
∠A + ∠B + ∠C = 1800
=> ∠C = 1800 - 550 - 750 = 500
Vì △ABC = △DEF
=> ∠A = ∠D = 750; ∠C = ∠F = 500 (2 góc tương ứng)
Vậy ∠A= 750; ∠B= 550; ∠C= 500; ∠D= 750; ∠E= 550; ∠F= 500
\(\Delta ABC=\Delta DEF\left(gt\right)\)
\(\Rightarrow\widehat{A}=\widehat{D}\text{ ( hai góc tương ứng ) }\)
\(\Rightarrow\widehat{B}=\widehat{E}=55^o\text{ ( hai góc tương ứng ) }\)
\(\Rightarrow\widehat{C}=\widehat{F}\text{ ( hai góc tương ứng ) }\)
Mặt khác \(\widehat{A}+\widehat{B}=130^o\left(gt\right)\)
\(\Rightarrow\widehat{A}=130^o-\widehat{B}=130^o-55^o=75^o\)
Mặt khác \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\text{ ( tổng 3 góc tam giác ) }\)
\(\Rightarrow\widehat{C}=180^o-\left(\widehat{B}+\widehat{A}\right)=180^o-\left(55^o+75^o\right)=50^o\)
\(\Rightarrow\widehat{A}=\widehat{D}=75^o\)
\(\Rightarrow\widehat{B}=\widehat{E}=55^o\)
\(\Rightarrow\widehat{C}=\widehat{F}=50^o\)
cho hinh thang ABCD AB//CD co goc D =60 do,AB=AD
a,Tinh cac goc cua hinh thang
b,chung minh BD la tia phan giac cua goc ADC va tinh goc DBC
ve hinh luon nhe