Tìm n thuộc Z để A thuộc Z
a) A=3n+9/n-4 b) A= 6n+5/2n-1
Cho A = \(\frac{6n-2}{3n+1}\); B = \(\frac{2n+1}{3n-1}\)
a ) Tìm n thuộc Z để A thuộc Z ; B thuộc Z
b) Tìm n thuộc Z để A;B lớn nhất ; A;B nhỏ nhất
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
Tìm n thuộc Z để các phân số sau có giá trị nguyên
a) A=\(\frac{3n+9}{n-4}\)
b) B=\(\frac{6n+5}{2n-1}\)
Đề A đạt giá trị nguyên
=> 3n + 9 chia hết cho n - 4
3n - 12 + 12 + 9 chia hết cho n - 4
3.(n - 4) + 2c1 chia hết cho n - 4
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Thay n - 4 vào các giá trị trên như
n - 4 = 1
n - 4 = -1
.......
Ta tìm được các giá trị :
n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}
a) Để A thuộc Z (A nguyên)
=> 3n+9 chia hết cho n-4
hay 3n+9-12+12 chia hết cho n-4 (-12+12=0)
3n-12+9+12 chia hết cho n-4
3n-12+21 chia hết cho n-4
3(n-4)+21 chia hết cho n-4
Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4
mà Ư(21)={21;1;7;3} nên ta có bảng:
n-4 | 21 | 1 | 3 | 7 |
n | 25 (tm) | 5 (tm) | 7 (tm) | 11 (tm) |
Vậy n={25;5;7;11} thì A nguyên.
b)
Để B thuộc Z (B nguyên)
=> 6n+5 chia hết cho 2n-1
hay 6n+5-3+3 chia hết cho 2n-1 (-3+3=0)
6n-3+5+3 chia hết cho 2n-1
6n-3+8 chia hết cho 2n-1
3(2n-1)+8 chia hết cho 2n-1
Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1
mà Ư(8)={8;1;2;4} nên ta có bảng:
2n-1 | 8 | 1 | 2 | 4 |
n | 4.5 (ktm) | 1 (tm) | 1.5 (ktm) | 2.5 (ktm) |
Vậy, n=1 thì B nguyên.
tìm n thuộc Z để A,B là các số nguyên.
A=\(\frac{3n+9}{n-4}\); B=\(\frac{6n+5}{2n-1}\)
Tìm n thuộc Z để giá trị phân số sau nguyên :
a) \(\frac{n-3}{n+4}\)
b) \(\frac{3n+9}{n-4}\)
c) \(\frac{6n+5}{2n-1}\)
Ta có : \(\frac{n-3}{n+4}=\frac{n+4-7}{n+4}=\frac{n+4}{n+4}-\frac{7}{n+4}=1-\frac{7}{n+4}\)
Để \(\frac{n-3}{n+4}\in Z\) thì 7 chia hết cho n + 4
=> n + 4 thuộc Ư(7) = {-7;-11;7}
Ta có bảng :
n + 4 | -7 | -1 | 1 | 7 |
n | -11 | -5 | -3 | 3 |
Tìm n thuộc N để
B=\(\frac{n^4+3n^3+2n^2+6n-2}{n^2+1}\)thuộc z
Bạn xem lại đề! Theo mình mẫu số =x2+2
Mình nghĩ sửa: \(B=\frac{n^4+3n^3+2n^2+6n-2}{n^2+2}\)
Tìm n thuộc Z đẻ các phân số sau là số nguyên
a, 6n-4/2n-5 b, 3n-4/n-1 c, 6n-3/3n+1
a, Đặt A = \(\frac{6n-4}{2n-5}\)
Để A là số nguyên :
\(6n-4⋮2n-5\Leftrightarrow3\left(2n-5\right)+11⋮2n-5\)
\(\Leftrightarrow11⋮2n-5\Rightarrow2n-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
2n - 5 | 1 | -1 | 11 | -11 |
2n | 6 | 4 | 16 | -6 |
n | 3 | 2 | 8 | -3 |
tương tự với b ; c nhé
cho A = 6n+9/3n+2
a. tìm n thuộc z để A có gt nguyên
b. tìm n thuộc z để A có gt nhỏ nhất
a)để A là số nguyên thì \(6n+9⋮3n+2\Rightarrow2\left(3n+2\right)+5⋮3n+2\)
vì 2(3n+2)\(⋮\)3n+2 nên 5 phải chia hết cho 3n+2
\(\Rightarrow n\in\left\{1;-1\right\}\)
b) để A bé nhất thì tử phải nhỏ nhất và mẫu lớn nhất mà A =\(1+\frac{5}{3n+2}\) nên \(\frac{5}{3n+2}\)phải nhỏ nhất thì n=-1
Tìm n thuộc Z để các phân số sau tối giản:
A=\(\frac{6n+8}{2n-1}\)
B=\(\frac{3n+5}{2n-1}\)
Để \(\frac{6n+8}{2n-1}\)tối giản thì \(\frac{11}{2n-1}\)tối giản \(\Leftrightarrow\)ƯC(11,2n-1)=1,-1
\(\Rightarrow\)2n-1 không chia hết 5\(\Rightarrow\)2n-1\(\ne\)11k(k\(\in\)Z, k\(\ne\)0)
\(\Rightarrow\)n\(\ne\)11k+1:2
Tìm n thuộc Z sao cho A; B thuộc Z
A=(3n+1)/ (n-4)
B=(2n+5) / (2n-1)
A= (3n-12)+13:n-4=3(n-4)+13
Để A thuộc Z thì 3(n-4)phải thuộc Z
=> (n-4)thuộc Ư(3)thuộc {1,-1,3,-3}
TH1:n-4=1=>n=5(TM)
TH2:n-4=-1=>n=3(TM)
TH3:n-4=3=>n=7(TM)
TH4:n-4=-3=>n=1(TM)
Vậy n thuộc {5,3,7,1} thìA thuộc z
A=(3-12)+13:n-4=3(n-a)+13
De A thuoc Z thi n-4 thuoc uoc (13)=(1;13;-13;-1)