Tìm x , y biết rằng: |3y| + ( 7/3 - x )2 = 0
Bài 1: Tìm các số x; y; z biết rằng \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 124.
Bài 2: Tìm các số x; y; z biết rằng \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
bài 1:tìm cặp số tự nhiên x,y biết:
1) (x+5)(y-3) = 15
2) xy+2x +3y = 0
3) xy - 2x + y = 9
bài 2:cho A = 2 + 22 + 23 + ...... + 260. chứng tỏ rằng: A chia hết cho 3, 5, 7
mik cần gấp ;-;
Bài 1 : Tìm giá trị của x,y biết
a) x + y = 10 và x = y
b) 2x +3y = 180 và x=y
Bài 2 : Tìm x,y thuộc Z biết
a) 4.(x -8)<0
b) -3(x-7)>0
c) 198(x-7)>0
1. Tìm x€ Z, biết
a/ |7x+3|=66
b/ |5x-2| <=0
c/ (x-7)×(x+3)<0
2. Tìm x, y€ Z, biết
a/(x-3)×(2y-2)=7
b/(2x+1)×3(3y-2)=-55
a) \(\left|7x+3\right|=66\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x+3=66\\7x+3=-66\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x=63\\7x=-69\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=9\left(N\right)\\x=-\frac{69}{7}\left(L\right)\end{cases}}\)
Vậy...
b) \(\left|5x-2\right|\le0\)
mà \(\left|5x-2\right|\ge0\)
\(\Rightarrow\)\(\left|5x-2\right|=0\)
\(\Leftrightarrow\)\(5x-2=0\)
\(\Leftrightarrow\)\(x=\frac{2}{5}\) (loại)
Vậy...
1.tìm các số x,y,z biết rằng 1/2x=2/3y=3/4z và x-y =15
2.a)x/2=y/3 và xy=54
b) x/5=y/3 va x^2-y^2=4 (x,y>0)
Tìm x, y biết rằng:
\(x^2+xy+y^2+3y+3=0\) 0
M.n giải giúp mk heng. Mk đang cần gấp
a) Tìm x biết:(x-1)(x-2)(x-3)(x-6) + x2=169
b) Tìm x;y nguyên biết: x2 - 2y2 + xy - 3x + 3y -1 = 0
c) Tìm x;y biết: x3+ y3 - 3xy +1 = 0 và 2x + 3y = 2018
1.Tìm x,y,z biết:
|2x-3y|+|2y-4z|=0 và x+y+z=7
2. a) |x-2|+|x-3|+|x-4|=0
b) |x+1|+|x+2|+|x+3|+|x+4|+|x+5|+|x+6|+|x+7|+|x+8|+|x+9|= x-1
3. Tìm x,y,z biết:
|2x-3y|+|5y-2z|+|2z-6|=0
a)\(\left|2x-3y\right|+\left|2y-4z\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\forall x;y\\\left|2y-4z\right|\ge0\forall y;z\end{matrix}\right.\) \(\Rightarrow\left|2x-3y\right|+\left|2y-4z\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|2y-4z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\2y=4z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=\dfrac{y}{4}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x+y+z}{6+4+2}=\dfrac{7}{12}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{12}.6=\dfrac{7}{2}\\y=\dfrac{7}{12}.4=\dfrac{7}{3}\\z=\dfrac{7}{12}.2=\dfrac{7}{6}\end{matrix}\right.\)
b)\(\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=0\)
\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x-3\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x-3\right|=0\\\left|x-4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)
Vì \(2\ne3\ne4\) nên \(x\in\varnothing\)
c)
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+8\right|+\left|x+9\right|\)
Với mọi \(x\ge0\) ta có:
\(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+8\right|=x+8\\\left|x+9\right|=x+9\end{matrix}\right.\)\(\Leftrightarrow x+1+x+2+...+x+8+x+9=x-1\)
\(\Leftrightarrow9x+90=x-1\)
\(\Leftrightarrow9x=x-89\)
\(\Leftrightarrow-8x=89\)
\(\Leftrightarrow x=\dfrac{89}{-8}\left(KTM\right)\)
Với mọi \(x< 0\) ta có:
\(\left\{{}\begin{matrix}x+1=-x-1\\x+2=-x-2\\x+8=-x-8\\x+9=-x-9\end{matrix}\right.\) \(\Leftrightarrow\left(-x-1\right)+\left(-x-2\right)+...+\left(-x-8\right)+\left(-x-9\right)=x-1\)
\(\Leftrightarrow-9x-90=x-1\)
\(\Leftrightarrow-9x=x+89\)
\(\Leftrightarrow-10x=89\)
\(\Leftrightarrow x=\dfrac{89}{-10}\left(TM\right)\)
d)\(\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\\ \left|5y-2z\right|\ge0\\ \left|2z-6\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|5y-2z\right|=0\\\left|2z-6\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=3\\y=\dfrac{6}{5}\\x=\dfrac{9}{5}\end{matrix}\right.\)
1, tìm x biết :
[ x-3 ] + [ x-2 ] + [ x-1 ] + ... + [ x+5 ] = 0
2, tìm x sao cho :
[ x-7 ] . [ x+3 ] < 0
3, cho biểu thức : A = [ 5.x^2 - 8.x^2 - 9.x^2 ] . [ 3y^3] . tìm x, y để A > hoặc = 0
cậu chia từng câu ra cho mình nhé