Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuấn Anh
Xem chi tiết
Ngô Ngọc Khánh
25 tháng 12 2015 lúc 11:24

chia nhỏ ra thôi . Nhiều này nhìn hoa mắt làm sao nổi.

Nguyễn Linh Anh
Xem chi tiết
Đặng Phương Thảo
13 tháng 7 2015 lúc 8:40

bạn đăng từng bài lên 1 đi

mik giải dần cho

phung thi hang
30 tháng 1 2017 lúc 7:15

dễ mà bn

Luu Kim Huyen
22 tháng 2 2017 lúc 11:43

Cho DABC vuông tại C . Trên cạnh AB lấy điểm D sao cho AD = AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.

a) Chứng minh AE là phân giác góc CAB

b) Chứng minh AD là trung trực của CD

c) So sánh CD và BC

d) M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB.

Sakura kinomoto
Xem chi tiết
Nguyễn Ngọc Trà My
Xem chi tiết
Nguyễn Ngọc Trà My
25 tháng 9 2018 lúc 17:28

Ai làm hộ mình với

Vô Danh Tiểu Tốt
Xem chi tiết
Jiki Katoji
Xem chi tiết
Phuong Hong
Xem chi tiết
Đỗ Đàm Phi Long
Xem chi tiết
Linhllinh
Xem chi tiết
Cô Hoàng Huyền
1 tháng 3 2018 lúc 16:43

 Đặt AC = x; BD = y (x, y > 0)

Ta có \(\Delta ACM\sim\Delta BMD\left(g-g\right)\Rightarrow\frac{AC}{MB}=\frac{AM}{BD}\)

\(\Rightarrow AC.BD=AM.MB=const\Rightarrow xy=c=const\)

\(S_{MCD}=S_{ACDB}-S_{ACM}-S_{MBD}=\frac{\left(x+y\right)\left(AM+MB\right)}{2}-\frac{x.AM}{2}-\frac{y.MB}{2}\)

\(=\frac{x.MB+y.AM}{2}\ge\sqrt{xy.MB.AM}=\sqrt{c^2}=c\)

Dấu bằng xảy ra khi x.MB = y.AM, lại có \(xy=MB.AM\Rightarrow\hept{\begin{cases}x=AM\\y=MB\end{cases}}\)

Vậy giá trị nhỏ nhất của \(S_{CMD}=c\left(đvdt\right)\) xảy ra khi AC = AM; BD = BM.