Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
❤Firei_Star❤
Xem chi tiết
Vũ Văn Dũng
Xem chi tiết
Thái Bùi Ngọc
Xem chi tiết
lop 6c thl
28 tháng 4 2017 lúc 18:15
hi 
minh cung ko 
biet lam 
Trần Thanh Tùng
Xem chi tiết
Fenny
Xem chi tiết
๓เภђ ภوยץễภ ђảเ
25 tháng 9 2020 lúc 16:38

Phần C đề thiếu

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D=3-\frac{203}{3^{100}}\)

\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)

Khách vãng lai đã xóa
Fenny
27 tháng 9 2020 lúc 9:41

sửa rồi nhá bn

Khách vãng lai đã xóa
๓เภђ ภوยץễภ ђảเ
27 tháng 9 2020 lúc 14:50

\(C=\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(\Rightarrow2C=1-\frac{1}{2}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(\Rightarrow2C+C=(1-\frac{1}{2}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}})+\)\((\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}})\)

\(\Rightarrow3C=1-\frac{1}{100}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{300}< \frac{1}{3}\left(đpcm\right)\)

Khách vãng lai đã xóa
Phạm Hồng Mai
Xem chi tiết
tail fairy
Xem chi tiết
Lê Thị Thanh Quỳnh
Xem chi tiết
Phạm Tuấn Đạt
2 tháng 9 2017 lúc 11:12

Ta có : \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};....;\frac{99}{100}< \frac{100}{101}\)

Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)\(\Rightarrow B>A\)

\(\Rightarrow A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)

\(\Rightarrow A.B=\frac{1}{101}\)

Vì \(B>A\)\(\Rightarrow A.B>A.A=A^2\)

\(\Rightarrow\frac{1}{101}>A^2\)

Mà \(\frac{1}{10^2}>\frac{1}{101}>A^2\Rightarrow\frac{1}{10^2}>A^2\)

\(\Rightarrow\frac{1}{10}< A\left(1\right)\)\(\)

Ta lai có :

\(\frac{1}{2}=\frac{1}{2};\frac{3}{4}>\frac{2}{3};\frac{5}{6}>\frac{4}{5};...;\frac{99}{100}>\frac{98}{99}\)

Đặt \(C=\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A.C=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\right)\)

\(\Rightarrow A.C=\frac{1}{2}.\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A.C=\frac{1}{200}\)

Vì \(A>C\)

\(\Rightarrow A^2>A.C=\frac{1}{200}\)

Mà \(A^2>\frac{1}{200}>\frac{1}{15^2}\)

\(\Rightarrow A^2>\frac{1}{15^2}\)

\(\Rightarrow A>\frac{1}{15}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\frac{1}{15}< A< \frac{1}{10}\)

\(\RightarrowĐPCM\)

Fudo
26 tháng 5 2019 lúc 22:17

                                                                    Bài giải

 \(\frac{1}{2}< \frac{2}{3}\text{ ; }\frac{3}{4}< \frac{4}{5}\text{ ; }\frac{5}{6}< \frac{6}{7}\text{ ; }...\text{ ; }\frac{99}{100}< \frac{100}{101}\)

\(\text{Đặt }B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

\(\Rightarrow\text{ }A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

\(\Rightarrow\text{ }A\cdot A< A\cdot B=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right)\)

\(A\cdot A< A\cdot B=\frac{1}{101}< \frac{1}{10}\)

\(A^2< \frac{1}{10}\text{ }\Rightarrow\text{ }A< \frac{1}{10}^{^{\left(1\right)}}\)

\(\frac{1}{2}=\frac{1}{2}\text{ ; }\frac{3}{4}>\frac{2}{3}\text{ ; }\frac{5}{6}>\frac{4}{5}\text{ ; }...\text{ ; }\frac{99}{100}>\frac{98}{99}\)

\(\text{Đặt }C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\)

\(A\cdot C=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\right)\)

\(A\cdot C=\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{98}{99}\cdot\frac{99}{100}\)

\(A\cdot C=\frac{1}{200}\)

\(\text{Vì }A>C\text{ }\Rightarrow\text{ }A^2>A\cdot C=\frac{1}{200}\)

\(\text{Mà }A^2>\frac{1}{200}>\frac{1}{15^2}\)

\(\Rightarrow\text{ }A>\frac{1}{15}^{^{\left(2\right)}}\)

\(\text{Từ }^{\left(1\right)}\text{ và }^{\left(2\right)}\)

\(\Rightarrow\text{ }\frac{1}{15}< A< \frac{1}{10}\)

\(\Rightarrow\text{ }\text{ĐPCM}\)

Acsimet
26 tháng 5 2019 lúc 22:19

                                                                    Bài giải

 \(\frac{1}{2}< \frac{2}{3}\text{ ; }\frac{3}{4}< \frac{4}{5}\text{ ; }\frac{5}{6}< \frac{6}{7}\text{ ; }...\text{ ; }\frac{99}{100}< \frac{100}{101}\)

\(\text{Đặt }B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

\(\Rightarrow\text{ }A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

\(\Rightarrow\text{ }A\cdot A< A\cdot B=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right)\)

\(A\cdot A< A\cdot B=\frac{1}{101}< \frac{1}{10}\)

\(A^2< \frac{1}{10}\text{ }\Rightarrow\text{ }A< \frac{1}{10}^{^{\left(1\right)}}\)

\(\frac{1}{2}=\frac{1}{2}\text{ ; }\frac{3}{4}>\frac{2}{3}\text{ ; }\frac{5}{6}>\frac{4}{5}\text{ ; }...\text{ ; }\frac{99}{100}>\frac{98}{99}\)

\(\text{Đặt }C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\)

\(A\cdot C=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\right)\)

\(A\cdot C=\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{98}{99}\cdot\frac{99}{100}\)

\(A\cdot C=\frac{1}{200}\)

\(\text{Vì }A>C\text{ }\Rightarrow\text{ }A^2>A\cdot C=\frac{1}{200}\)

\(\text{Mà }A^2>\frac{1}{200}>\frac{1}{15^2}\)

\(\Rightarrow\text{ }A>\frac{1}{15}^{^{\left(2\right)}}\)

\(\text{Từ }^{\left(1\right)}\text{ và }^{\left(2\right)}\)

\(\Rightarrow\text{ }\frac{1}{15}< A< \frac{1}{10}\)

\(\Rightarrow\text{ }\text{ĐPCM}\)

Lê Thị Nhung Nguyệt
Xem chi tiết
Đỗ Hải An
29 tháng 4 2018 lúc 18:20

Vì tử bằng mẫu