cho hình vuông abcd. M thuộc đường chéo ac và me vuông góc với ab, mf vuông góc với bc. tìm vị trí m để diện tích dè nhỏ nhất
Cho hình vuông ABCD có cạnh bằng a. Lấy một điểm M tùy ý trên đường chéo AC. Vẽ ME vuông góc với AB, MF vuông góc với BC. Xác định vị trí của M trên đường chéo AC để diện tích tam giác DEF nhỏ nhất, tìm GTNN đó.
Cho hình vuông ABCD có AB = a cố định. M là một điểm di động trên đường chéo AC. Kẻ ME vuông góc với AB và MF vuông góc với BC. Xác định vị trí của M trên AC sao cho diện tích tam giác DEF nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Cho hình vuông ABCD có AB=a cố định. M là một điểm di động trên đường chéo AC.? Kẻ ME vuong góc với AB và MF vuông góc với BC. Xác định vị trí của M trên AC sao cho diện tích tam giác DEF nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Cho hình vuông ABCD có AB=a cố định. M là một điểm di động trên đường chéo AC.? Kẻ ME vuong góc với AB và MF vuông góc với BC. Xác định vị trí của M trên AC sao cho diện tích tam giác DEF nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Cho hình vuông ABCD, điểm M nằm trên AC. vẽ ME vuông góc với AB, MF vuông góc với BC. tìm vị trí của M để diện tích tam giác DEF nhỏ nhất
cho hình vuông ABCD cạnh AB=a. Qua điểm M trên đường chéo AC kẻ ME vuông góc với AB, MF vuông góc với BC. Xác định điểm M để diện tich DEF nhỏ nhất
Gọi AE = x thì BE = a-x
Ta có : \(S_{DEF}=S_{ABCD}-S_{ADE}-S_{BEF}-S_{DEC}\)
\(=a^2-\frac{ax}{2}-\frac{x\left(a-x\right)}{2}-\frac{a\left(a-x\right)}{2}\)
\(=\frac{a^2-ax+x^2}{2}=\frac{1}{2}\left[\left(x-\frac{a}{2}\right)^2+\frac{3a^2}{4}\right]\)
\(=\frac{1}{2}\left(x-\frac{a}{2}\right)^2+\frac{3a^2}{8}\ge\frac{3a^2}{8}\)
Dấu "=" xảy ra khi \(x=\frac{a}{2}\Rightarrow\hept{\begin{cases}AE=EB\\BF=FC\end{cases}\Rightarrow}\)M là trung điểm của AC hay M là giao điểm của AC và BD thì diện tích tam giác DEF đạt giá trị nhỏ nhất bằng \(\frac{3a^2}{8}\)
Kẻ ME⊥AB; MK⊥CD; MN⊥AD; MF⊥BC
Dễ có △DKM = △EMF (g.c.g)
=> EF = DM
^DMK = ^EFM mà MK⊥FM nên DM⊥EF tại H
2S[DEF] = DH.EF = EF(EF + MH) = EF^2 + EF.MH = EF^2 + MF.ME
=> 2S[DEF] = x^2 + (a - x)^2 + x(a - x) = x^2 - ax + a^2 = (x - a/2)^2 + 3a^2/4)≥ 3a^2/4
=> S[DEF] ≥ 3a^2/8 <=> x = a/2 <=> E là trung điểm AB <=> M là trung điểm AC
ko hiểu thì thôi nhé
Cho hình vuông ABCD , M thuộc đường chéo BD . Kẻ ME vuông góc với AB , MF vuông góc với AD .
a) Chứng minh DE=CF , DE vuông góc với CF
b)Chứng minh DE, BF , MC đồng quy
c) Tìm vị trí của M trên BD để Diện tích AEMF đạt giá trị lớn nhất ?
Năm mới vui vẻ nha mọi người !
a. Dễ thấy AEM F là hình chữ nhật => AE = FM
Dễ thấy tg DFM vuông cân tại F => FM = DF
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC)
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H
c) Dễ thấy AE + EM = AE + EB = AB = không đổi
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F)
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD
Tìm x, y thuộc Z sao cho:
x(y+2)=-8
xy - 2x- 2y=0
a) VÌ đề bài như vậy => DE=CF và DE l CF
b, TA có: đề bài ra như vậy (chứng minh trên)
=> DE, BF, MC đồng quy
c, Vì DE, BF, MC đồng quy (cmt) => Chúng ta không cần tìm M trên BD
Cho tam giác ABC vuông cân tại A. Điểm M thuộc BC. Từ M hạ ME vuông góc với AB, MF vông góc với AC
a, CM: FC.BA + BA.BE = AB2 và chu vi tứ giác MEAF không phụ thuộc vào vị trí của điểm M
b, Tìm vị trí của M để diện tích MEAF lớn nhất
c, Chứng tỏ đường thẳng đi qua M vuông góc với EF luôn đi qua 1 điểm cố định
Cho Tam giác ABC vuông cân tại A. Điểm M trên cạnh BC. Từ M kẻ ME vuông góc với AB, kẻ MF vuông góc với AC (E thuộc AB; F thuộc AC)a. Chứng minh: FC.BA+CA.BE=AB2AB2 và chu vi tứ giác MEAF không phụ thuộc vào vị trí của M.b. Tìm vị trí của M để diện tích tứ giác MEAF lớn nhất.c. Chứng tỏ đường thẳng đi qua M vuông góc với EF luôn đi qua một điểm cố định. giúp cái
có ai on ko nó chuyện vs mih chứ ai đng xem bóng đá thì cứ xem