cho tam giac ABC vuông tại B kéo dài đường trung tuyến AM lấy điểm D sao cho MD=MA.
So sánh CD với AB; CD với AC
So sánh GÓC BAM vỚI GÓC MAC
cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a. Tính số đo góc ABD.
b. Chứng minh ΔABC = ΔBAD
c. So sánh độ dài AM và BCho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. So sánh độ dài AM và BC.
Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
Cho tam giác ABC vuong tại B. Kéo dài trung tuyến AM lấy MD = MA
1, So sánh CD với AB , CD với AC
2, So sánh góc BMA với góc MAC
1)A)XÉT \(\Delta ABM\)VÀ\(\Delta DCM\)CÓ
\(BM=CM\left(GT\right)\)
\(\widehat{M_1}=\widehat{M_2}\left(Đ/Đ\right)\)
\(AM=DM\left(GT\right)\)
\(\Rightarrow\Delta ABM=\Delta DCM\left(C-G-C\right)\)
\(\Rightarrow AB=CD\)(HAI CẠNH TƯƠNG ỨNG)(1)
TA CÓ XÉT \(\Delta ABC\)VUÔNG TẠI B
\(\Rightarrow\widehat{B}>\widehat{C};\widehat{B}>\widehat{A}\)
VÌ\(\widehat{B}>\widehat{C}\)
\(\Rightarrow AB< AC\)QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN(2)
TỪ (1) VÀ (2) => \(AC>CD\)
B) CÂU B QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN
b) XÉT \(\Delta ADC\)
CÓ \(DC< AC\left(CMT\right)\)
\(\Rightarrow\widehat{ADC}>\widehat{DAC}\left(1\right)\)QUA HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN
MÀ \(\Delta ABM=\Delta DCM\left(CMT\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{MDC}\)
HAY\(\widehat{BAM}=\widehat{ADC}\left(2\right)\)
TỪ (1) VÀ (2) \(\Rightarrow\widehat{BMA}>\widehat{MAC}\)
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA. Lấy điểm D sao cho MD = MA
a) Chứng minh :T/G AMC=T/G DMB
b) Chứng minh : T/G ABD vuông
c) Chứng minh : AD = BC
d) So sánh độ dài AM với BC , AB với BC ?
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Ta có: ΔAMC=ΔDMB
nên \(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này so le trong
nên AC//DB
hay DB⊥AB
=>ΔABD vuông tại B
c: Xét ΔCAB vuông tại A và ΔDBA vuông tại B có
BA chung
CA=DB
Do đó: ΔCAB=ΔDBA
Suy ra: AD=BC
d: AM=BC/2
AB<BC
Bài 1:Cho ABC vuông tại A, có AB = 3cm; AC = 4cm. Gọi AM là đường trung tuyến, trên tia đối của tia MA lấy điểm D sao cho AM = MD. a) Tính độ dài cạnh BC b) Chứng minh AB = CD, AB // CD c) Chứng minh góc BAM > góc CAM d) hạ AM vuông góc vs bc . Trên tia đối của tia ha lấy E sao cho HE=HA.cm DE SONG SONG BC
AI LÀM đc xong nhất là câu d) IB MIK nhận 20k thẻ cào nha
Cho tam giác ABC có AB < AC, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh AB = CD, AB // CD.
b) So sánh M A B ^ và M A C ^ .
c) So sánh A M B ^ và A M C ^ .
Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Gọi AM là đường trung tuyến (M BC), trên tia đối của tia MA lấy điểm D sao cho AM = MD.
a) Tính dộ dài BC.
b) Chứng minh AB = CD, AB // CD.
c) Chứng minh góc BAM > góc CAM.
a, áp dụng định lí pytago vào tam giác ABC ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=3^2+4^2=25\)
\(BC=\sqrt{25}=5\)
B, xét tam giác BAC và DCA có:
BM=MC
AM=MD
góc BMA= DMC (đối đỉnh)
=> Tam giác BAC=DCA
=>BA=DC
Góc BAM=MDC=>BA//DC(so le trong)
cho mk xin **** nah
Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Gọi AM là đường trung tuyến (M BC), trên tia đối của tia MA lấy điểm D sao cho AM = MD.
a) Tính dộ dài BC.
b) Chứng minh AB = CD, AB // CD.
c) Chứng minh góc BAM > góc CAM.
Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Gọi AM là đường trung tuyến (M BC), trên tia đối của tia MA lấy điểm D sao cho AM = MD.
a) Tính dộ dài BC.
b) Chứng minh AB = CD, AB // CD.
c) Chứng minh góc BAM > góc CAM.