phan tich Da thuc thanh nhan tu a) x^2-8x+16-y^2 b)x^2+9x+18 c) x^3-7x-6
phan tich da thuc thanh nhan tu
a, x^2.y-x^3-9y+9x
b, x^2(x-1)+16(1-x)
\(x^2\left(x-1\right)+16\left(1-x\right)\)
\(=x^2\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-16\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
phan tich da thuc thanh nhan tu
a, 9x2+6x-2
b, x2+9x+x2+9
c,x3+9x+x2+9
d, (x2+8x+7)(x2+8x+15)+15
phan tich da thuc sau thanh nhan tu: 3(x+5)(x+6)(x+7)-8x(2 cach)
phan tich da thuc thanh nhan tu
3x^4-48
x^4-8x
x^3-6x^2+9x
\(3x^4-48\)
\(=\left(3x^4-6x^3\right)+\left(6x^3-12x^2\right)+\left(12x^2-24x\right)+\left(24x-48\right)\)
\(=3x^3\left(x-2\right)+6x^2\left(x-2\right)+12x\left(x-2\right)+24\left(x-2\right)\)
\(=\left(x-2\right)\left[\left(3x^3+6x^2\right)+\left(12x+24\right)\right]\)
\(=\left(x-2\right)\left[3x^2\left(x+2\right)+12\left(x+2\right)\right]\)
\(=\left(x-2\right)\left(x+2\right)\left(3x^2+12\right)\)
\(x^4-8x\)
\(=x\left(x^3-8\right)\)
\(=x\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(4x-8\right)\right]\)
\(=x\left[x^2\left(x-2\right)+2x\left(x-2\right)+4\left(x-2\right)\right]\)
\(=x\left(x-2\right)\left(x^2+2x+4\right)\)
\(x^3-6x^2+9x\)
\(=\left(x^3-3x^2\right)-\left(3x^2-9x\right)\)
\(=x^2\left(x-3\right)-3x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-3x\right)\)
\(=x\left(x-3\right)\left(x-3\right)\)
bai 166 a) 6x^2 -11x +3 phan tich cac da thuc sau thanh nhan tu
b) 2x^+3x-27
c) 2x^2-5xy-3y^2
bai 167 a) x^3+2x-3 b) x^3-7x+6 c)x^3 +5x^2 +8x +4 d) x^3 -9x^2 +6x +16
e)x^3-x^2-x-2 g ) x^3+x^2-x+2 h)x^3 -6x^2-x+30
bai 169 a) 27x^3-27x^2 +18x-4
b)2x^3-x^2+5x+3
c)(x^2-3)^2+16
Dài 166
b) 2x2+3x-27=2x2-6x+9x-27=2x(x-3)+9(x-3)=(x-3)(2x+9)
x^4+x^3-9x^2+10x-8 phan tich da thuc thanh nhan tu
Thay `x = 2` ta được :
`x^4+x^3-9x^2+10x-8`
`= 2^4 + 2^3 - 9*2^2 + 10*2 - 8`
`= 16 + 8 - 36 + 20 - 8`
`= 0`
Vậy `x = 2` là nghiệm của phương trình trên
Do đó ta thực hiện phép chia :
\(\left(x^4+x^3-9x^2+10x-8\right):\left(x-2\right)\)
Vậy \(x^4+x^3-9x^2+10x-8=\left(x-2\right)\left(x^3+3x^2-3x+4\right)\).
Phan tich da thuc thanh nhan tu:
+)\(2x-1-x^2\)
+) \(8x^3+y^6\)
+) \(x^2-16+4xy+4y^2\)
\(-\left(x^2-2x+1\right)=-\left(x-1\right)^2\)
\(8x^3+y^6=\left(2x+y^2\right)\left(4x^2-2xy^2+y^4\right)\)
\(x^2-16+4xy+4y^2=\left(x+2y\right)^2-16\)
\(=\left(x+2y-4\right)\left(x+2y+4\right)\)
phan tich da thuc thanh nhan tu
a)(x^2-x+1)^2-8x^2-4x+1
b)x^5-x^4-x^3-x^2-x-2
Phan tich thanh nhan tu x^3-7x+6 x^3-9x^2+6x+16 lam nhanh mik tick cho
a) x³ -7x +6
= x³ -x²+x²-x-6x+6
= x²(x-1)+x(x-1)-6(x-1)
= (x-1)(x² +x-6)
= (x-1)(x²-2x+3x-6)
=(x-1)(x-2)(x+3)
b) x³ +5x²+8x+4
= x³ +x² +4x²+4x+4x+4
= x²(x+1)+4x(x+1)+4(x+1)
=(x+1)(x²+4x+4)
=(x+1)(x+2)²
c) x³ -9x² +6x+16
= x³ +x²-10x²-6x+16x+16
= (x+1)(x² -10x+16)
=(x+1)(x-8)(x-2)