Giải hệ phương trình sau :
\(\begin{cases}2lgx-lgy=-5\\3lgx+4lgy=28\end{cases}\)
giải hệ phương trình
a) \(\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)
b)\(\hept{\begin{cases}x+y=\frac{4x-3}{5}\\x+3y=\frac{15-9y}{14}\end{cases}}\)
\(a,hpt\Leftrightarrow\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}27x-14y=-588\\15x+24y=150\end{cases}\Leftrightarrow}\hept{\begin{cases}9x-\frac{14}{3}y=-196\\5x+8y=50\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}45x-\frac{70}{3}y=-980\\45x+72y=450\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{286}{3}y=1430\\45x+72y=450\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}y=15\\x=-14\end{cases}}\)
Giải các hệ phương trình sau bằng phương pháp thế.
a) \(\begin{cases}3x-y=5\\5x+2y=23\end{cases}\); b) \(\begin{cases}3x+5y=1\\2x-y=-8\end{cases}\)
a ) \(\begin{cases}3x-y=5\\5x+2y=23\end{cases}\)
Từ phương trình \(\left(1\right)\) \(\Leftrightarrow y=3x-5\) \(\left(3\right)\)
Thế \(\left(3\right)\) vào phương trình \(\left(2\right)\) : \(5x+2\left(3x-5\right)=23\)
\(\Leftrightarrow5x+6x-10=23\Leftrightarrow11x=33\Leftrightarrow x=3\)
Từ đó \(y=3.3-5=4\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(3;4\right)\)
b ) \(\begin{cases}3x+5y=1\\2x-y=-8\end{cases}\)
Từ hệ phương trình \(\left(2\right)\) \(\Leftrightarrow y=3x+8\)
Thế (3) vào (1): \(3x+5\left(2x+8\right)=1\Leftrightarrow3x+10x+40=1\Leftrightarrow13x=-39\)
\(\Leftrightarrow x=-3\)
Từ đó \(y=2\left(-3\right)+8=2\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(-3;2\right)\)
Giải hệ phương trình sau
\(\hept{\begin{cases}3x+5y=34\\4x-5y=-13\\5x-2y=5\end{cases}}\)
Cộng vế hai biểu thức ta đc \(7x=21\)=> x =3
thay vào ta tìm đc y=5
_Kudo_
\(\hept{\begin{cases}5x+2\sqrt{5}y=\sqrt{5}\\5x+\sqrt{5}y=-5\end{cases}}\)
Giải hệ phương trình sau
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}x+y=5\\x+3y=1\end{cases}}\)
2) \(\hept{\begin{cases}3x-y=2\\x+y=6\end{cases}}\)
3) \(\hept{\begin{cases}x+2y=5\\3x-2y=3\end{cases}}\)
4) \(\hept{\begin{cases}2x-y=5\\2x+3y=1\end{cases}}\)
1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)
\(2y=-4\Rightarrow y=-2\)
\(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )
2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>
\(x+3x-2=6\)
\(4x=8\Rightarrow x=2\)
\(\Rightarrow y=6-2=4\)
3) \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2
\(3x-5+x=3\)
\(4x=8\Rightarrow x=2\)
\(2y=3\Rightarrow y=\frac{3}{2}\)
4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )
\(5+y+3y=1\)
\(4y=-4\Rightarrow y=-1\)
\(\Rightarrow2x=4\Rightarrow x=2\)
mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...
giải hệ phương trình sau \(\hept{\begin{cases}2\left|x\right|+3y=7\\3\left|x\right|-3y=5\end{cases}}\)
PT 2 là 3|x|-y=5 b oi mih viết sai đề bài
Bài này giải bình thường bằng pp cộng đại số, khác ở đoạn kết:
\(\Leftrightarrow\hept{\begin{cases}2!x!+3y=7\\9!x!-3y=15\end{cases}}\)(nhân 3 cho pt dưới)
\(\Leftrightarrow\hept{\begin{cases}11!x!=22\\2!x!-y=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}!x!=2\\2.2-y=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2or-2\\y=-1\end{cases}}\)
Vậy: S = {2;-1} và {-2;-1}
Ps: Nhưng dù sao khi dính lấy trị tuyệt đối !-2! vẫn ra 2 thôi
Giải các hệ phương trình sau:
\(\hept{\begin{cases}x+y+z=6\\2x+3y-5=-19\\4x+9y+25z=97\end{cases}}\)
\(\hept{\begin{cases}x+y+z+t=4\\x+y-z-t=-4\\x-y-z-t=0\end{cases}}\)
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}2x+y=5\\3x+5y=4\end{cases}}\)
2) \(\hept{\begin{cases}x-2y=1\\3x+4y=3\end{cases}}\)
3) \(\hept{\begin{cases}x-y=3\\4x+3y=5\end{cases}}\)
4) \(\hept{\begin{cases}4x+3y=2\\2x-2y=1\end{cases}}\)
Giải các hệ phương trình sau:
a)\(\begin{cases}x^3+y^3=1\\x^5+y^5=x^2+y^2\end{cases}\)
b)\(\begin{cases}3xy=4\left(x+y\right)\\5yz=6\left(y+z\right)\\7zx=8\left(z+x\right)\end{cases}\)