Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thùy Trang
Xem chi tiết
Yim Yim
21 tháng 5 2018 lúc 22:28

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=4+2=6\)

dấu "=" xảy ra khi x=y=1/2

Đinh Thị Ngọc Anh
Xem chi tiết
hanvu
Xem chi tiết
ST
13 tháng 7 2019 lúc 18:52

ĐKXĐ: \(x\ge1;y\ge25\)

\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)

Vì x>=1,y>=25 => x-1>=0,y-25>=0 

=> D >= 0

Dấu "=" xảy ra <=> x=1,y=25

Vậy MinD=0 khi x=1,y=25

Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)

=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)

Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)

Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:

\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)

=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)

Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)

Dấu "=" xảy ra <=> x=2,y=50

Vậy MaxD = 1/5 khi x=2,y=50

nguyễn quỳnh anh
Xem chi tiết
Thanh Tùng DZ
28 tháng 5 2019 lúc 9:26

\(P=\frac{x}{y+1}+\frac{y}{x+1}=\frac{x\left(x+1\right)+y\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\frac{x^2+x+y^2+y}{\left(y+1\right)\left(x+1\right)}\)

\(P=\frac{\left(x+y\right)^2-2xy+\left(x+y\right)}{xy+x+y+1}=\frac{2-2xy}{2+xy}\)

\(P=\frac{2-2xy}{2+xy}=\frac{-4-2xy+6}{2+xy}=\frac{-2\left(2+xy\right)+6}{2+xy}=-2+\frac{6}{2+xy}\)

Ta có : xy \(\ge\)0 nên \(P=-2+\frac{6}{2+xy}\le-2+\frac{6}{2+0}=1\)

Vậy P max = 1 \(\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=1;y=0\end{cases}}\)

nguyễn quỳnh anh
28 tháng 5 2019 lúc 10:37

sao bạn ko dùng AMGM vậy

Thanh Tùng DZ
28 tháng 5 2019 lúc 11:01

Thế sao bạn ko làm đi mà hỏi mình

Đoàn Thị Thu Hương
Xem chi tiết
Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Luật Lê Bá
Xem chi tiết
Nguyễn Anh Quân
2 tháng 7 2017 lúc 21:29

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

Rau
2 tháng 7 2017 lúc 21:38


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

Luật Lê Bá
2 tháng 7 2017 lúc 21:40
sai rồi hehe
An Vy
Xem chi tiết
Nguyễn Phan Ngọc Tú
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 10 2016 lúc 22:24

\(\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}=\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)

Áp dụng BĐT Cauchy ta có : \(\frac{\sqrt{\left(y-2\right).2}}{\sqrt{2}y}\le\frac{y-2+2}{2\sqrt{2}y}=\frac{1}{2\sqrt{2}}\)

\(\frac{\sqrt{\left(x-3\right).3}}{\sqrt{3}x}\le\frac{x-3+3}{2\sqrt{3}x}=\frac{1}{2\sqrt{3}}\)

Vậy \(\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}\le\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=6\\y=4\end{cases}}\)

Vậy ..................................

Nguyễn Phan Ngọc Tú
15 tháng 10 2016 lúc 22:31

tks :)