phân tích đa thức thành nhan tử 6x^4-13x^2+6
Phân tích đa thức thành nhân tử : 6x^2 -13x + 6
=6x^2 - 4x - 9x +6
=(6x^2 -4x) - (9x-6)
=2x(3x -2) - 3(3x-2)
=(3x-2) (2x - 3)
Áp dụng định lý bơ du để phân tích các đa thức sau thành nhan tử
2x^3+x^2-13x+6
Phân tích đa thức sau thành nhân tử:
\(6x^2+13x+5\)
\(=6x^2+3x+10x+5=3x\left(2x+1\right)+5\left(2x+1\right)=\left(3x+5\right)\left(2x+1\right)\)
6x2+3x+10x+5=3x(2x+1)+5(2x+1)=(3x+5)(2x+1)
Phân tích đa thức thành nhân tử
a) 6x2 -13x + 6
b) 6x2 + 7x-3
a) Ta có : 6x2 - 13x + 6 = 6x2 - 9x - 4x + 6 = 3x(2x - 3) - 2(2x - 3) = (3x - 2)(2x - 3)
b) Ta có: 6x2 + 7x - 3 = 6x2 + 9x - 2x - 3 = 3x(2x + 3) - (2x + 3) = (3x - 1)(2x + 3)
\(a,6x^2-13x+6\)
\(=6x^2-9x-4x+6\)
\(=3x\cdot\left(2x-3\right)-x\cdot\left(2x-3\right)\)
\(=\left(2x-3\right)\cdot\left(3x-x\right)\)
\(=\left(2x-3\right)\cdot2x\)
\(b,6x^2+7x-3\)
\(=6x^2-2x+9x-3\)
\(=2x\cdot\left(3x-1\right)+3\cdot\left(3x-1\right)\)
\(=\left(3x-1\right)\cdot\left(2x+3\right)\)
\(a,6x^2-13x+6=6x^2-9x-4x+6\)
\(=3x\left(2x-3\right)-2\left(2x-3\right)=\left(2x-3\right)\left(3x-2\right)\)
\(b,6x^2+7x-3=6x^2-2x+9x-3\)
\(=2x\left(3x-1\right)+3\left(3x-1\right)=\left(3x-1\right)\left(2x+3\right)\)
Phân tích đa thức thành nhân tử:
6x2+13x-15
\(6x^2+13x-15\)
\(=6x^2+18x-5x-15\)
\(=6x.\left(x+3\right)-5.\left(x+3\right)\)
\(=\left(x+3\right).\left(6x-5\right)\)
\(6x^2+13x-15\)
\(=6x^2+18x-5x-15\)
\(=6x\left(x+3\right)-5\left(x+3\right)\)
\(=\left(x+3\right)\left(6x-5\right)\)
\(6x^2+13x-15\)
\(\Rightarrow6x^2+18x-5x-15x\)
\(\Rightarrow6x\times\left(x+3\right)-5\times\left(x+3\right)\)
\(\Rightarrow\left(x+3\right)\times\left(6x-5\right)\)
Code : Breacker
Phân tích đa thức thành nhân tử:
6x4+23x3+13x2-23x+7
\(P\left(x\right)=6x^3+13x^2+4x-3\)
\(=\left(6x^3+6x^2\right)+\left(7x^2+7x\right)-\left(3x-3\right)\)
\(=6x^2\left(x+1\right)+7x\left(x+1\right)-3\left(x+1\right)\)
\(=\left(6x^2+7x-3\right)\left(x+1\right)\)
\(=\left[\left(6x^2-2x\right)+\left(9x-3\right)\right]\left(x+1\right)\)
\(=\left[2x\left(3x-1\right)+3\left(3x-1\right)\right]\left(x+1\right)\)
\(=\left(3x-1\right)\left(2x+3\right)\left(x+1\right)\)
phân tích đa thức thành nhân tử:
a) 9y^2 + 9y - 6xy + x^2 - 3x -4
b) x^4 + 6x^3 + 13x^2 + 12x + 4
\(x^4+6x^3+13x^2+12x+4\)
\(=x^4+x^3+5x^3+5x^2+8x^2+8x+4x+4\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+8x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+8x+4\right)\)
\(=\left(x+1\right)\left(x^3+x^2+4x^2+4x+4x+4\right)\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\right]\)
\(=\left(x+1\right)^2\left(x+2\right)^2\)
phân tích đa thức thành nhân tử
1)x3+6x2-13x-42
2)2x3-x2+3x+6
\(x^3+6x^2-13x-42\)
\(x^3+6x^2-13x-42\)
\(=\left(x+7\right)\left(x-3\right)\left(x+2\right)\)
b, \(2x^3-x^2+3x+6\)
\(=2x^3+2x^2-3x^2-3x+6x+6\)
\(=2x^2\left(x+1\right)-3x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^2-3x+6\right)\)
\(x^3+6x^2-13x-42\)
\(=x^3+7x^2-x^2-7x-6x-42\)
\(=x^2\left(x+7\right)-x\left(x+7\right)-6\left(x+7\right)\)
\(=\left(x+7\right)\left(x^2-x-6\right)\)
\(=\left(x+7\right)\left(x-3\right)\left(x+2\right)\)