Tìm số hữu tỉ x biết :
\(\left|x-\frac{3}{5}\right|
Tìm các số hữu tỉ x,y,z biết :
\(x\left(x+y+z\right)=\frac{15}{2};y\left(x+y+z\right)=-\frac{5}{2};z\left(x+y+z\right)=20\)
Ta có:
\(x\left(x+y+z\right)=\frac{15}{2}\)
\(y\left(x+y+z\right)=\frac{-5}{2}\)
\(z\left(x+y+z\right)=20\)
=>\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\frac{-5}{2}+20\)
\(\left(x+y+z\right)\left(x+y+z\right)=\frac{15-5}{2}+20\)
\(\left(x+y+z\right)^2=\frac{10}{2}+20\)
\(\left(x+y+z\right)^2=5+20\)
\(\left(x+y+z\right)^2=25\)
=>x+y+z=5 hoặc x+y+x=-5
Với x+y+z=5
=>\(x.5=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{1}{5}=\frac{3}{2}\)
\(y.5=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{1}{5}=\frac{-1}{2}\)
\(z.5=20\)=>\(z=\frac{20}{5}=4\)
Với x+y+z=-5
=>\(x.\left(-5\right)=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{-1}{5}=\frac{-3}{2}\)
\(y.\left(-5\right)=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{-1}{5}=\frac{1}{2}\)
\(z.\left(-5\right)=20\)=>\(z=\frac{20}{-5}=-4\)
Vậy \(x=\frac{3}{2},y=-\frac{1}{2},z=4\); \(x=-\frac{3}{2},y=\frac{1}{2},z=-4\)
Ta có:
\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\left(-\frac{5}{2}\right)+20\)(Cộng vế với vế)
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=\frac{50}{2}=25\)
\(\Rightarrow\left(x+y+z\right)^2=25\Leftrightarrow x+y+z=\sqrt{25}=5\)
\(\Rightarrow\hept{\begin{cases}x.5=\frac{15}{2}\Rightarrow x=\frac{3}{2}\\y.5=-\frac{5}{2}\Rightarrow y=-\frac{1}{2}\\z.5=20\Rightarrow z=4\end{cases}}\)
Vậy \(x=\frac{3}{2};y=-\frac{1}{2};z=4\).
CÁC BÀI TẬP VỀ LŨY THỪA SỐ HỮU TỈ
Tìm số hữu tỉ x biết:
a, \(8< 2^x< \frac{2^9}{2^5}\)
b, \(27< 81^3:3^x< 243\)
c, \(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(-\frac{2}{5}\right)^2\) CÁC BN NHỚ GIẢI THEO CÁCH CỦA LỚP 7 NHÉ!!! =^.^=
Tìm số hữu tỉ x biết:
\(a,\left|x+\frac{11}{2}\right|>15,51\)
\(b,\frac{2}{5}<\left|x-\frac{7}{5}\right|<\frac{3}{5}\)
Tìm x thuộc tập hợp số hữu tỉ biết:
a/ \(\left|x-\frac{1}{3}\right|-\left|\frac{-5}{2}\right|=\frac{2}{3}-\frac{1}{4}\)
b/ \(x-\left|1\frac{1}{6}\right|=\frac{5}{2}\)
c/ \(\left|3x-2\right|-\frac{3}{5}=\frac{1}{2}\)
1,Tìm số hữu tỉ x biết\(\frac{x+4}{2005}+\frac{x+3}{2006}=\frac{x+2}{2007}+\frac{x+1}{2008}\)
2,tìm x biết:\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
1) \(\frac{x+4}{2005}\)\(+\)\(\frac{x+3}{2006}\)= \(\frac{x+2}{2007}\)\(+\)\(\frac{x+1}{2008}\)
\(\Leftrightarrow\) \(\frac{x+4}{2005}\)\(+\)1 \(+\)\(\frac{x+3}{2006}\)\(+\)1 = \(\frac{x+2}{2007}\)\(+\)1 \(+\)\(\frac{x+1}{2008}\)\(+\)1
\(\Leftrightarrow\)\(\frac{x+2009}{2005}\)+ \(\frac{x +2009}{2006}\)= \(\frac{x+2009}{2007}\)+\(\frac{x+2009}{2008}\)
\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006) = (x + 2009)(1/2007 + 1/2008)
\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006 - 1/2007 - 1/2008) = 0
Ta thấy: 1/2005 + 1/2006 - 1/2007 - 1/2008 \(\ne\)0
\(\Leftrightarrow\)x + 2009 = 0
\(\Leftrightarrow\)x = -2009
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=\left(x-1\right)\left(x-2\right)x=0\)
tìm đc x=0;1;2
Tìm các số hữu tỉ x, y, z biết rằng:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
\(\left(x+y\right)xyz^2+\left(y+z\right)yzx^2+\left(z+x\right)zxy^2=477120\)
Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow x=3k;y=5k;z=7k\)
\(xy+yz+zx=3k.5k+5k.7k+7k.3k=k^2\left(15+35+21\right)=71k^2;xyz=3k.5k.7k=105k^3\)
Ta có : \(xyz\left(xz+yz+xy+xz+yz+xy\right)=477120\)
\(\Rightarrow xyz\left(xz+yz+xy\right)=238560\)\(\Rightarrow105k^3.71k^2=238560\Rightarrow k^5=32=2^5\Rightarrow k=2\)
Vậy : x= 6 ; y = 10 ; z = 14
tìm số hữu tỉ x biết :
a)|1-2x|>7
b)\(\frac{-5}{x-3}< 0\)
c)\(\left(x-2\right)\left(x+2\right)\left(4-x\right)\left(x-1\right)^2\) \(\le0\)
a/ \(\left|1-2x\right|>7\Leftrightarrow\left[{}\begin{matrix}1-2x=7\\1-2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x< -6\\2x< 8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -3\\x< 4\end{matrix}\right.\)
b/ \(\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\) ( vì -5<0)
\(\Leftrightarrow x>3\)
I.Tìm x để:
a)\(\frac{1}{x-2}\)là số hữu tỉ âm
b)\(\frac{-5}{3x+6}\)là số hữu tỉ dương
II.Tìm x, biết:
\(\frac{3}{2}x-\frac{4}{3}=-\left(\frac{1}{2}-\frac{2}{3}x\right)\)
1
a.=>x-2<0=>x<2
b.=>3x+6<0=>3x<-6=>x<-2
Chúc bạn học tốt ! ^_^
tìm số hữu tỉ biết
\(\left|x-\frac{3}{4}\right|-9=\frac{1}{2}\)
\(\left|x-\frac{3}{4}\right|-9=\frac{1}{2}\)
\(\left|x-\frac{3}{4}\right|=\frac{19}{2}\)
\(\orbr{\begin{cases}x-\frac{3}{4}=\frac{19}{2}\\x-\frac{3}{4}=-\frac{19}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{41}{4}\\x=-\frac{35}{4}\end{cases}}\)