chứng minh rằng nếu a+b=1 thì a^2+b^2>=1/2
1)chứng minh rằng nếu a+b+c=1 thì a^4 +c^4 +b^4 =abc
2) với a,b,c dương chứng minh rằng 2căna +2cănb+2cănc +a^2+b^2+c^2 >= 3(a+b+c)
chứng minh rằng: nếu (a,b)=1 thì (a^2, a+b)=1
Chứng minh rằng nếu a^2 - b^2 là 1 số NT thì a^2 - b^2 = a + b
chứng minh rằng nếu:1/a+1/b+1/c=2 và a+b+c=a*b*c thì 1/a^2+1/b^2+1/c^2=3
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac.
(1/a + 1/b + 1/c)² = 1/a² + 1/b² + 1/c² + 2(1/ab + 1/bc + 1/ac) = 4
<=> 1/a² + 1/b² + 1/c² + 2(bcac + abac + abbc)/(a²b²c²) = 4
<=> 1/a² + 1/b² + 1/c² + 2abc(a + b + c)/(a²b²c²) = 4
<=> 1/a² + 1/b² + 1/c² + 2 = 4
(vi` abc(a + b + c) = a² b² c²)
<=> 1/a² + 1/b² + 1/c² = 2 !!
Chứng minh rằng nếu a + b = 1 thì a2 + b2 ≥ 1/2
Áp dụng bđt Bunhiakovxki
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Ta có: a + b = 1 ⇔ b = 1 – a
Thay vào bất đẳng thức a2 + b2 ≥ 1/2 , ta được:
a2 + (1 – a)2 ≥ 1/2 ⇔ a2 + 1 – 2a + a2 ≥ 1/2
⇔ 2a2 – 2a + 1 ≥ 1/2 ⇔ 4a2 – 4a + 2 ≥ 1
⇔ 4a2 – 4a + 1 ≥ 0 ⇔ (2a – 1)2 ≥ 0 (luôn đúng)
Vậy bất đẳng thức được chứng minh
Ta có a+b=1
=> theo BĐT Cô si ta có
a+b\(\ge\)\(2\sqrt{ab}\) dấu = khi a=b
=> \(1\ge2\sqrt{ab}\)
<=> \(\sqrt{ab}\le\frac{1}{2}\) <=> \(ab\le\frac{1}{4}\)
khi đó a+b=1
=> (a+b)2=1
<=> \(a^2+b^2+2ab=1\)
<=>\(a^2+b^2=1-2ab\ge1-2\times\frac{1}{4}\)\(\ge1-\frac{1}{2}=\frac{1}{2}\)( đpcm)
dấu = khi a=b=1/2
Chứng minh rằng nếu a + b = 1 thì a mũ 2 + b mũ 2 lớn hơn hoặc bằng 1 /2
Ta có a + b =1 \(\Leftrightarrow b=1-a\)
Thay vào bất đẳng thức \(a^2+b^2\ge\frac{1}{2}\) , ta được:
\(a^2+\left(1-a\right)^2\ge\frac{1}{2}\Leftrightarrow a^2+1-2a+a^2̸̸\ge\frac{1}{2}\)
\(\Leftrightarrow2a^2-2a+1\ge\frac{1}{2}\Leftrightarrow4a^2-4a+2\ge1\)
\(\Leftrightarrow4a^2-4a+1\ge0\Leftrightarrow\left(2a-1\right)^2\ge0\) ( luôn đúng )
Vậy bất đẳng thức được chứng minh
Chúc bạn học tốt !!!
Cho a^2+b^2+c^2+3= 2(a+b+c). Chứng minh a=b=c=1
2. Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
ta có: \(\frac{a^2+c^2}{b^2+a^2}\)do \(a^2=bc\)
=>\(\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
vậy \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
\(\text{Ta có : }\frac{a^2+c^2}{b^2+a^2}\text{ do }a^2=bc\)
\(\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
\(\text{Vậy }\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
Chứng minh rằng nếu a + b = 1 thì a2 + b2 >= 1/2
Với mọi a, b ta có :
( a - b) 2 >= 0
<=> a2 - 2ab + b2 >= 0
<=> a2 + b2 >=2ab
<=> 2 ( a2 + b2 ) >= a2 +2ab + b2
<=> 2 (a2 + b2 ) >= ( a + b )2 mà a+b=1 nên 2 ( a2 + b2 ) >=1
<=> a2 + b2 >= 1/2
Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2
Với mọi a, b ta có :
( a - b) 2 >= 0
<=> a2 - 2ab + b2 >= 0
<=> a2 + b2 >=2ab
<=> 2 ( a2 + b2 ) >= a2 +2ab + b2
<=> 2 (a2 + b2 ) >= ( a + b )2 mà a+b=1 nên 2 ( a2 + b2 ) >=1
<=> a2 + b2 >= 1/2
Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2
Ta có \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\) (1)
\(ab\le\frac{\left(a+b\right)^2}{4}\)
\(ab\le\frac{1}{4}\Rightarrow2ab\le\frac{1}{2}\) (2)
Từ (1) và (2) suy ra điều cần chứng minh