tìm nghiệm nguyên của phương trình x^2-4x+2y-xy+9=0
giúp mình với
tìm nghiệm nguyên của phương trình :x^2-4x+2y-xy+9=0
Tìm nghiệm nguyên của phương trình:
a) xy + 4x -2y =2
b) x + xy + y = 9
a, \(xy+4x-2y=2\)
\(\Rightarrow y\left(x-2\right)+4\left(x-2\right)=-6\)
\(\Rightarrow\left(x-2\right)\left(y+4\right)=-6\)
| \(x-2\) | 1 | -6 | -1 | 6 | 2 | -3 | -2 | 3 |
| \(y+4\) | -6 | 1 | 6 | -1 | -3 | 2 | 3 | -2 |
| \(x\) | 3 | -4 | 1 | 8 | 4 | -1 | 0 | 5 |
| \(y\) | -10 | -3 | 2 | -5 | -7 | -2 | -1 | -6 |
Tìm nghiệm nguyên của các phương trình sau
\(a,x^2+y^2+xy+3x-3y+9\)\(=0\)
\(b,x^2-4x-2y+xy+1=0\)
b ) x2 - 4x - 2y + xy + 1 = 0
( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0
( x - 2 )2 - y ( 2 - x ) = 3
( 2 - x ) ( 2 - x - y ) = 3
đến đây lập bảng tìm ra x,y
a) x2 + y2 + xy + 3x - 3y + 9 = 0
2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0
( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0
( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0
\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0
\(\Rightarrow\)x = -3 ; y = 3
SKT_NTT câu b bạn làm rõ ra hơn có đc không
Tìm nghiệm nguyên của phương trình \(x^4-4x^2+y^2+2x^2y-9=0\)
Xét phương trình:
\(x^{4} - 4 x^{2} + y^{2} + 2 x^{2} y - 9 = 0.\)
Coi phương trình là bậc hai theo \(y\):
\(y^{2} + 2 x^{2} y + \left(\right. x^{4} - 4 x^{2} - 9 \left.\right) = 0.\)
Theo công thức nghiệm:
\(y = - x^{2} \pm \sqrt{4 x^{2} + 9} .\)
Đặt \(t = \sqrt{4 x^{2} + 9}\) \(\Rightarrow t^{2} - 4 x^{2} = 9\).
Suy ra:
\(\left(\right. t - 2 x \left.\right) \left(\right. t + 2 x \left.\right) = 9.\)
Xét các trường hợp:
\(t-2x=1,t+2x=9\Rightarrow t=5,x=2.\)\(t-2x=3,t+2x=3\Rightarrow t=3,x=0.\)\(t-2x=9,t+2x=1\Rightarrow t=5,=-2.\)Từ mỗi nghiệm \(\left(\right. x , t \left.\right)\) ta tìm \(y = - x^{2} \pm t\):
Với \(x=2,t=5:y=-4\pm5\Rightarrow y=1\text{ho}ặ\text{c}-9.\)Với \(x=-2,t=5:y=-4\pm5\Rightarrow y=1\text{ho}ặ\text{c}-9.\)Với \(x=0,t=3:y=0\pm3\Rightarrow y=3\text{ho}ặ\text{c}-3.\)Tìm nghiệm nguyên của phương trình:
a) \(2x^2+2y^2+x^2+xy^2-x^2y^2=37\)
b)\(x^2y+x+xy^2+y+2xy=9\)
b) x2y + x + xy2 + y + 2xy = 9
xy(x + y + 2) + (x + y + 2) = 11
<=> (xy + 1)(x + y + 2) = 11
Xét các TH
+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9
+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)
<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)
Tìm nghiệm nguyên của phương trình:
x^4 -2y^4 - x^2.y^2 - 4x^2 - 7y^2 - 5 =0
Tìm nghiệm nguyên của phương trình: \(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow x^2+2xy+y^2-xy-x^2y^2=0\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
VT là 1 số chính phương mà vế phải là tích 2 số tự nhiên liên tiếp
\(\Rightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\)
+ Với \(xy=0\Rightarrow\left(x+y\right)^2=x^2+y^2=0\Rightarrow x=y=0\)
+ Với \(xy+1=0\Rightarrow xy=-1\Rightarrow\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)
Tìm nghiệm nguyên của phương trình:
1. x + y = xy
2. p(x + y) = xy với p nguyên tố
3. 5xy - 2y2 - 2x2 + 2 = 0