Có tồn tại giá trị nguyên x y,thỏa mãn biểu thức 19x^2+28y^2=729
chứng minh rằng ko có giá trị số nguyên nào của x ,y thõa mãn
19x2+28y2=2001
19x^2+28y^2=729
Tim x, y ho minh. Thanks
tìm nghiệm nguyên của phương trình 19x^2 + 28y^2 = 729
\(19x^2+28y^2=729\)
\(\Leftrightarrow18x^2+27y^2+x^2+y^2=3.243=9.81\)
\(\Rightarrow\left(x^2+y^2\right)⋮3\Rightarrow x,y⋮3\)
(vì a^2 chia cho 3 dư 1)
đặt x = 3u, y =3v thay vào pt:
19.(3u)^2 + 28(3v)^2 = 9.81
=> 19u^2 + 28.v^2 = 81
lập luận tương tự: đặt u = 3u1, v =3v1, ta có:
19(3.u1)^2 + 28(3.v1)^2 = 9.9
=> 19u1^2 + 28v1^2 = 9
tượng tự: đặt u1 = 3.u2, v1 = 3.v2, ta có:
19.(3.u2)^2 + 28(3.v2)^2 = 9
=> 19u2^2 + 28v2^2 = 1 pt nầy vô nghiệm
vậy pt đã cho không có nghiệm nguyên
Giải phương trình nghiệm nguyên sau: \(19x^2+28y^2=729\)
1; Tập hợp các giá trị của x thoả mãn:/x+3/-5=0
2;giá trị nguyên dương của x thỏa mãn :/x-1/=-[x-1] là?
3;cho 2 số nguyên x;y thỏa mãn :/x/+/y=7,giá trị lớn nhất của x.y là?
4;giá trị lớn nhất của biểu thức : -3-/x+2/ là?
5;GTLN của biểu thức ; 15-[x-2]^2 là ?
giúp mình với . mình đang cần gấp nhé!
chứng minh không tồn tại cặp giá trị nguyên x,y thỏa mãn : \(x^2-2-2y^2=2011\)
CMR không tồn tại cặp giá trị nguyên (x;y) thỏa mãn:\(x^2-2-2y^2=2011\)
chứng minh rằng không tồn tại cặp giá trị nguyên (x;y) thỏa mãn :\(x^2-2-2y^2=2011\)
Có bao nhiêu giá trị nguyên của tham số m để tồn tại cặp số (x;y) thỏa mãn e 2 x + y + 1 - e 3 x + 2 y = x + y + 1 đồng thời thỏa mãn log 2 2 2 x + y - 1 - m + 4 log 2 x + m 2 + 4 = 0 .
A. 3
B. 4
C. 5
D. 6
Đáp án A
Ta có e 2 x + y + 1 - e 3 x + 2 y = x + y + 1 ⇔ e 2 x + y + 1 + 2 x + y + 1 = e 3 x + 2 y + 3 x + 2 y *
Xét f t = e t + t là hàm số đồng biến trên ℝ mà f 2 x + y + 1 = f 3 x + 2 y ⇒ y = 1 - x
Khi đó log 2 2 2 x + y - 1 - m + 4 log 2 x + m 2 + 4 = 0
Phương trình (1) có nghiệm khi và chỉ khi ∆ = m + 4 - 4 m 2 + 4 ≥ 0 ⇔ 0 ≤ m ≤ 8 3 .