Tìm Min \(P=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}\)
Tìm Max của
1) \(5+\sqrt{-4x^2-4x}\)
2) \(\sqrt{x-2}+\sqrt{4-x}\)
3) \(x+\sqrt{2-x^2}\)
4) \(2x+\sqrt{4-2x^2}\)
Tìm Min của
1) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
2) \(\sqrt{x\left(x+1\right)\left(x+2\right)\left(x+3\right)+5}\)
a) \(A=5+\sqrt{-4x^2-4x}\)
\(A==5+\sqrt{-4x\left(x+1\right)}\)
Có: \(-4x\left(x+1\right)\le0\)
\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(B=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)
Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)
Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)
Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)
Vậy: \(Max_B=2\) tại \(x=3\)
Bài 2:
a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)
Vậy MinA=2 khi x=2
bÀI 2 PHẦN b bạn nhân 2 ngoặc 1 r` đặt ẩn là t =>min...
tìm min
a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
b)B=\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x+2\sqrt{x-1}}\)
a ) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge\left|x-1+3-x\right|+\left|x-2\right|=\left|x-2\right|+2\ge2\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left|x-2\right|=0\end{cases}\Rightarrow x=2}\)(TM)
Vậy \(A_{min}=2\Leftrightarrow x=2\)
b ) \(B=\sqrt{x-2\sqrt{x-1}}-\sqrt{x+2\sqrt{x-1}}\)
\(=\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}-\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|\sqrt{x-1}-1\right|-\left|\sqrt{x-1}+1\right|\)
\(\le\left|\sqrt{x-1}-1-\sqrt{x-1}-1\right|=2\)có GTLN là 2
Bài 1: Tìm min của
\(B=\sqrt{1-2x+x^2}+\sqrt{x^2+6x+9}+\sqrt{x^2+4x+4}\)
B = \(l1-xl+lx+3l+lx+2l\ge l1-x+x+3l+lx+2l\)
\(=4+lx+2l\)
Vậy GTNn là 4 khi x = -2
B1:tìm max:\(\sqrt{x^2+4x+13}-\sqrt{x^2+2x+5}\)
B2:tìm min:\(\sqrt{\left(7-x\right)\left(x+1\right)}-\sqrt{x\left(4-x\right)}\)
tìm min \(A=\sqrt{x^2+10x+26}+\sqrt{x^2+4x+4}\)
\(B=\sqrt{x^2+4x+8}+\sqrt{x^2-2x+2}\)
a,tìm min mã của biểu thức sau\(y=\sqrt{x^2-2\sqrt{2}x+2}+\sqrt{y^2-2y+1}\)
biết\(|x|+|y|=5\)
b, tìm min :\(y=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
\(hcmuop\underrightarrow{jjjjjjjjj}me\)
1. Cho biểu thức:
B= ( \(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\)) :\(\frac{1}{\sqrt{x}-1}\)
a) Rút gọn B
b) Tìm Min B
2. Rút gọn biểu thức:
\(\sqrt{\frac{1}{1-2x+x^2}}.\sqrt{\frac{4-4x+4x^2}{81}}\)
3. giải phương trình: 3+\(\sqrt{2x-3}\)= x
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
tìm Min của biểu thức:
M= \(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
N= \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)