Tìm các cặp số tự nhiên (x,y) biết: 3x + 2 chia hết cho y và 3y + 2 chia hết cho x
1,tìm các số tự nhiên x sao cho các số có dạng sau đều là số tự nhiên
3x + 5 chia hết cho x - 1
2x + 8 chia hết cho 2x + 1
2, tìm x,y thuộc N biết
a, xy = 5 và x > y
b, (x + 1) ( y + 3) = 6
c, ( x - 3) (y + 1) = 7
d, xy + x + 3y = 5
tìm tất cả các cặp số nguyên x,y với x>1 , y>1 sao cho 3x+1 chia hết cho y và 3y+1 chia hết cho x
cho x,y là các số tự nhiên chứng minh rằng 3x+y chia hết cho 7 khi và chỉ khi 2x+3y chia hết cho 7
2x + 3y chia hết cho 7
=> 3(2x+3y) chia hết cho 7
hay 6x+ 9y chia hết cho 7 (1)
3x + y chia hết cho 7
=> 2(3x+y) chia hết cho 7
hay 6x + 2y chia hết cho 7
xét hiệu
=> 6x + 9y - (6x + 2y)
= 6x -+ 9y - 6x - 2y
= 7y chia hết cho 7 (2)
từ 1 và 2
=> 6x + 2y chia hết cho 7
hay 3x + y chia hết cho 7 (đpcm)
Tìm tất cả các cặp số nguyên (x;y) với x>1,y>1 sao cho:(3x+1) chia hết cho y đồng thời (3y+1) chia hết cho x
Do \(3x-1⋮y\) và \(3y+1⋮x\)nên \(\left(3x-1\right)\left(3y+1\right)⋮xy\)
\(\Rightarrow9xy+3x+3y+1⋮xy\)
Mà \(9xy⋮xy\)
\(\Rightarrow\frac{3x}{y}+3+y\frac{1}{y}⋮x\)
Do vai trò của x , y như nhau , nên giả sử
\(\Rightarrow\frac{x}{y}\le1\)
\(\Rightarrow\frac{3x}{y}+3+\frac{1}{y}< 7\)
\(\Rightarrow1< x< 7\)
\(\Rightarrow x=2;3;4;5;6\)
Thay x vào 3x + 1 \(⋮\)y và 3y-1\(⋮x\)
Tìm tất cả các cặp số nguyên (x,y) t/mãn với x,y>1
sao cho (3x+1)chia hết cho y đồng thời (3Y+1)chia hết x
Chứng minh rằng:
a)10n-1 chia hết cho 99, với n là số tự nhiên chẵn
b)Nếu 3x+5y chia hết cho 7 thì x+4y chia hết cho 7 (x,y là các số tự nhiên) và ngược lại
c)Nếu 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17 (x,y là các số tự nhiên).Điều đó ngược lại có đúng
không?
TẤT CẢ ĐỀU CÓ TRONG " câu hỏi tương tự "
Bài 1 : Cho a thuộc N*. Chứng minh rằng ( 4^a +1 ) . (4^a +2) chia hết cho 3
Bài 2 : Tìm các số tự nhiên x , biết 4^x +11 = 6y
Bài 3: Cho biết a và 5a có tổng các chữ số bằng nhau . Chứng minh rằng a chia hết cho 9
Bài 4 : Tìm tất cả các số tự nhiên x , y sao cho x+1 chia hết cho y và y+1 chia hết cho x
cho x, y là số tự nhiên sao cho x + 3y chia hết cho 4. Chứng minh rằng: 3x + y chia hết cho 4.
THAM SỜ KHẢO SỜ NHA;
2x + 3y chia hết cho 7
=> 3(2x+3y) chia hết cho 7
hay 6x+ 9y chia hết cho 7 (1)
3x + y chia hết cho 7
=> 2(3x+y) chia hết cho 7
hay 6x + 2y chia hết cho 7
xét hiệu
=> 6x + 9y - (6x + 2y)
= 6x -+ 9y - 6x - 2y
= 7y chia hết cho 7 (2)
từ 1 và 2
=> 6x + 2y chia hết cho 7
hay 3x + y chia hết cho 7 (đpcm)
bài 1:tìm cặp số tự nhiên x,y biết:
1) (x+5)(y-3) = 15
2) xy+2x +3y = 0
3) xy - 2x + y = 9
bài 2:cho A = 2 + 22 + 23 + ...... + 260. chứng tỏ rằng: A chia hết cho 3, 5, 7
mik cần gấp ;-;