Gỉa sử x = a/m y= b/m ( a,b,m \(\in\) Z m > 0) và y>x Hãy chứng tỏ rằng chọn z = a+b/2m thì ta có x<z,y
Gỉa sử x = a/m, y = b/m (a,b,m thuộc Z, m>0 ) và x<y. Hãy chứng tỏ rằng nếu chọn z = a+b/2m thì ta có x<z<y
Gỉa sử x= a/m ; y= b/m ( a,b,m thuộc Z ; m>0 ) và x<y.
Hãy chứng tỏ rằng nếu chọn z= a+b/2m thì ta có x<z<y.
a có : x < y hay => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = và y = và z =
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)
Từ (1) và (2) , kết luận : x < z < y.
Gỉa sử x=a/m, y=b/m (a,b,m thuộc Z, m > 0) và x < y.Hãy chứng tỏ rằng nếu chọn z= a+b/2m thì ta có x < b < y
Gỉa sử x = a/m ,y =b/m ( a,b,m thuộc Z,m khác 0 ) và x<y.Hãy chứng tỏ rằng nếu chọn z =a+b/2m thì ta có x<z<y
Từ \(x=\frac{a}{m}\Rightarrow x=\frac{2a}{2m}\)
\(y=\frac{b}{m}\Rightarrow y=\frac{2b}{2m}\)
\(z=\frac{a+b}{2m}\)
Vì x<y (theo đề)
=>\(\frac{a}{m}< \frac{b}{m}\)=>a<b
Do đó :
+)a<b=>a+a<b+a => 2a<a+b (1)
+)a<b=>a+b<b+b=>a+b<2b (2)
=>2a<a+b<2b
=>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
=>x<z<y (đpcm)
Gỉa sử x = a/m, y = b/m (a,b,m thuộc Z, m > 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = a + b/2m thì ta có x < z < y.
Hướng dẫn : Sử dụng tính chất : Nếu a,b,c thuộc Z và a < b thì a + c < b + c
Giả sử x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\)(a, b, m \(\in\) Z, m > 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = \(\dfrac{a+b}{2m}\) thì ta có x < z < y
Hướng dẫn: Sử dụng tính chất: Nếu a, b, c \(\in\) Z và a < b thì a + c < b + c
Giúp mk nốt câu này nhé
Gỉa sử x=\(\frac{a}{m},y=\frac{b}{m}\left(a,b,c\in Z,m>0\right),x< y\) Hãy chứng tỏ rằng nếu chọn z=\(\frac{a+b}{m}\)thì ta có x<z<y
Gỉa sử \(x=\frac{a}{m};y=\frac{b}{m}\)\(\left(a,b,m\in Z;m>0\right)\)và x<y. Hãy chứng tỏ rằng nếu chọn \(z=\frac{a+b}{2m}\) thì ta có x<z<y.
a/m < b/m => a < b
=> x = 2a/2m, y = 2b/2m
2a < a+ b < 2b => x = 2a/2m < z = (a+b)/2m < y = 2b/2 (đpcm)
giả sử x= a/m, y= b/m (a,b,m thuộc Z, m > 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = a+b/2m thì ta có x<z<y
Ta có x=\(\frac{a}{m}=\frac{2a}{2m}\) , y=\(\frac{b}{m}=\frac{2b}{2m}\)
Vì x<y nên a<b
Có a<b =>2a<a+b (1)
Có a<b =>a+b<2b (2)
Từ (1) và (2) =>2a<a+b<2b =>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
=>x<y<z ( đpcm)