1.Tìm x và y biết rằng 2x+242=3y
2.Thực hiện phép tính 1.3+2.4+3.5+...+99.100
thực hiện phép tính
a) A= 1.3+2.4+3.5+....+97.98+99.100
b) B=1.100+2.99+3.98+.....+100.1
c) C= 1.1+2.2+....+100.100
thực hiện phép tính : (1+ 1/1.3) ( 1+1/2.4) ( 1+1/3.5)...( 1+1/2020.2021)
Thực hiện phép tính 2. (1/1.3 + 1/3.5+ 1/ 5.7 + .... + 1/ 99.100) ta được kết quả:
Thực hiện phép tính:
\(\left(1+\dfrac{1}{1.3}\right)+\left(1+\dfrac{1}{2.4}\right)+\left(1+\dfrac{1}{3.5}\right)+...+\left(1+\dfrac{1}{2019.2021}\right)\)
Sửa đề: A=(1+1/1*3)(1+1/2*4)*...*(1+1/2019*2021)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2020^2}{\left(2020-1\right)\left(2020+1\right)}\)
\(=\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot...\cdot\dfrac{2020}{2019}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2020}{2021}=2020\cdot\dfrac{2}{2021}=\dfrac{4040}{2021}\)
Thực hiện phép tính:
\(\left(1+\dfrac{1}{1.3}\right)+\left(1+\dfrac{1}{2.4}\right)+\left(1+\dfrac{1}{3.5}\right)+...+\left(1+\dfrac{1}{2019.2021}\right)\)
Thực hiện phép tính: \(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\right)\)
\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\right)\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
2*(1/1*3+1/3*5+.......+1/99*100)
=2*(2/1*3+2/3*5+.....+2/99*100)*1/2
=1/3-1/5+1/5-1/7+....+1/99-1/100
=1/3-1/100
=100/300-3/300
=97/300
2(1/1.3+1/3.5+1/5.7+...+1/99.100)
=2/1.3+2/3.5+2/5.7+...+2/99.100
=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100
=1-1/100
=99/100
Thực hiện phép tính:
A=1.99+2.98+3.97+...+98.2+99.1
B=1.2.3+2.3.4+3.4.5+...+17.28.19
C=1.4+2.5+3.6+...+100.103
D=1.3+2.4+3.5+...+97.99+98.100
Ta có: \(A=1\cdot99+2\cdot98+3\cdot97+\cdots+98\cdot2+99\cdot1\)
\(=2\left(1\cdot99+2\cdot98+\cdots+49\cdot51\right)+50\cdot50\)
\(=2\left\lbrack1\left(100-1\right)+2\left(100-2\right)+\cdots+49\left(100-49\right)\right\rbrack+2500\)
\(=2\cdot\left\lbrack100\left(1+2+\cdots+49\right)-\left(1^2+2^2+\cdots+49^2\right)\right\rbrack+2500\)
\(=2\cdot\left\lbrack100\cdot\frac{49\cdot50}{2}-\frac{49\cdot\left(49+1\right)\left(2\cdot49+1\right)}{6}\right\rbrack+2500\)
\(=2\left\lbrack50\cdot49\cdot50-\frac{49\cdot50\cdot99}{6}\right\rbrack+2500\)
\(=2\cdot\left\lbrack49\cdot50\cdot50-49\cdot25\cdot33\right\rbrack+2500\)
\(=2\cdot49\cdot25\cdot\left(2\cdot50-33\right)+2500\)
\(=49\cdot50\cdot67+2500=166650\)
Ta có: \(B=1\cdot2\cdot3+2\cdot3\cdot4+\ldots+17\cdot18\cdot19\)
\(=2\left(2-1\right)\left(2+1\right)+3\left(3-1\right)\left(3+1\right)+\cdots+18\left(18-1\right)\left(18+1\right)\)
\(=2\cdot\left(2^2-1\right)+3\left(3^2-1\right)+\cdots+18\left(18^2-1\right)\)
\(=\left(2^3+3^3+\cdots+18^3\right)-\left(2+3+\cdots+18\right)\)
\(=\left(1^3+2^3+\cdots+18^3\right)-\left(1+2+3+\cdots+18\right)\)
\(=\left(1+2+\cdots+18\right)^2-\left(1+2+\cdots+18\right)\)
\(=\left(18\cdot\frac{19}{2}\right)^2-18\cdot\frac{19}{2}=\left(9\cdot19\right)^2-9\cdot19=29070\)
Ta có: \(C=1\cdot4+2\cdot5+\cdots+100\cdot103\)
\(=1\left(1+3\right)+2\left(2+3\right)+\cdots+100\cdot\left(100+3\right)\)
\(=\left(1^2+2^2+\cdots+100^2\right)+3\left(1+2+\cdots+100\right)\)
\(=\frac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}+\frac{3\cdot100\cdot101}{2}\)
\(=\frac{100\cdot101\cdot201}{6}+\frac{3\cdot100\cdot101}{2}=50\cdot101\cdot67+3\cdot50\cdot101\)
\(=50\cdot101\cdot70=3500\cdot101=353500\)
Ta có: \(D=1\cdot3+2\cdot4+3\cdot5+\cdots+97\cdot99+98\cdot100\)
\(=1\left(1+2\right)+2\left(2+2\right)+3\left(3+2\right)+\cdots+97\cdot\left(97+2\right)+98\cdot\left(98+2\right)\)
\(=\left(1^2+2^2+\cdots+98^2\right)+2\cdot\left(1+2+3+\cdots+98\right)\)
\(=\frac{98\cdot\left(98+1\right)\left(2\cdot98+1\right)}{6}+2\cdot\frac{98\cdot99}{2}\)
\(=\frac{98\cdot99\cdot197}{6}+98\cdot99=49\cdot33\cdot197+98\cdot99=49\cdot33\left(197+2\cdot3\right)\)
\(=49\cdot33\cdot203=328251\)
Thực hiện phép tính:
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{20.22}\right)\)
Thực hiện phép tính :
A=\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2015.2017}\right)\)