a) 3x = 5y = 7z và x+ y + z = 10
b) 6x = 5y ; 7y = 8z và 3x + 2y + 4z = 12
c) x : y : z = 1: 2 : 3 và x\(^3\) + y\(^3\) + 2\(^3\) = 36
d) \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) và 3x\(^3\) + y\(^3\) = 51
giúp mik vs rùi mik tick cho
Cho x,y,z:
3x=2y ; 5y=7z và 3x+5y-7z=60
suy ra:x/2=y/3 , y/7 = z/5
suy ra x/14 = y/21 = z/15 = 3x/42 = 5y/105 = 7z/105
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
3x/42= 5y/105 = 7z/105= 3x +5y -7z/42+105-105 = 10/7
suy ra : x= 20
y = 30
z = 150/7
Néu đúng thì k cho mk nha
ta có: 3x=2y => \(\frac{x}{2}=\frac{y}{3}\)
5y=7z =>\(\frac{y}{7}=\frac{z}{5}\)
=>\(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}\)
=>\(\frac{3x}{42}=\frac{5y}{105}=\frac{7z}{245}=\)\(\frac{3x+5y-7z}{42+105-105}=\frac{60}{42}=\frac{10}{7}\)
\(\frac{x}{14}=\frac{10}{7}\)=> x =20
\(\frac{y}{21}=\frac{10}{7}\)=> y = 30
\(\frac{z}{15}=\frac{10}{7}\) => z=\(\frac{150}{7}\)
Đáp số:20;30;\(\frac{150}{7}\)
Tìm x,y,z biết 2x=3y;5y=7z và 3x+5y-7z=30
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}=\frac{7y}{14};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{2y}{14}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}=\frac{3x+5y-7z}{63+70-70}=\frac{30}{63}=\frac{10}{21}\)
\(\frac{3x}{63}=\frac{10}{21}\Rightarrow x=\frac{10}{21}.63:3=10\)
\(\frac{5y}{70}=\frac{10}{21}\Rightarrow y=\frac{10}{21}.70:5=\frac{20}{3}\)
\(\frac{7z}{70}=\frac{10}{21}\Rightarrow z=\frac{10}{21}.70:7=\frac{100}{21}\)
tìm x,y,z biết :
2x = 3y ; 5y = 7z và 3x + 5y - 7z và 3x + 5y - 7z = 30
3x/2 = y/3 = 7z/4 và x+y+z 134
x/2 = y/3 = z/ và x.y.z = 810
a) 2x=3y;5y=7z và x-y-z=-27
b)x/4=y/5=z/6 mà x^2-2y^2+z^2=18
c) x:y:z=3:8:5 và 3x+y-2z=14
d) 2x=3y;5y-7z và 3x+5y-7z=30
e)x-3/-4=y+4/7=z-5/3 và 3x-2y+7z=-48
f)-3x=4y;6y=7z và x-2y+3z=-48
g) x/-3=y/7;y/-2 =z/5 và -2x-4y +5z=146
Tìm x,y,z
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
c) \(x:y:z=3:8:5\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)và \(3x+y-2z=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
Ta có: \(\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\)
\(\frac{y}{8}=2\Rightarrow y=16\)
\(\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\)
Vậy:\(x=6;y=16;z=10\)
Tìm x , y , z biết :
a) 3x = 2y ; 7y = 5z và x - y + z = 32
b) 3x = 2y ; 5y = 7z và 3x + 5y - 7z = 42
c) 5x = 2y ; 2x = 3z và x . y = 90
d)2x = 3y = 5z và x + y - z = 95
e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
d, \(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=75\\y=50\\z=30\end{cases}}\)
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
tìm x,y,z, biết : 3x=5y=7z và x+y-z=41
có 3x=5y=7z
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{x}{15}\) (z/15 nha, ko phải x/15)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y-z}{35+21-15}=\frac{41}{41}=1\)
=>\(\frac{x}{35}=1\Rightarrow x=35\)
\(\frac{y}{21}=1\Rightarrow y=21\)
\(\frac{z}{15}=1\Rightarrow z=15\)
vậy...........
từ 3x=5y=7z=x/3=y/5=z/7
=>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y-z}{3+5-7}=\frac{41}{1}=41\)
\(\Rightarrow x=3x41=123\)
\(y=41x5=205\)
\(z=41x7=287\)
tự vậy nhé
Tìm x,y,z biết
a/\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(^{x^2+y^2+z^2=116}\)
b/ \(2x=3y;5y=7z\)và\(3x+5z-7y=30\)
c/\(3x=2y;5y=7z\)và \(3x+5y-7z=60\)
d/ \(\frac{x}{y}=\frac{8}{5};\frac{y}{z}=\frac{2}{7}\)và \(x+y+z=61\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
suy ra: \(x=2k;\)\(y=3k;\)\(z=4k\)
Ta có: \(x^2+y^2+z^2=116\)
<=> \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)
<=> \(29k^2=116\)
<=> \(k^2=4\)
<=> \(k=\pm2\)
tự làm nốt
a) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x^2+y^2+z^2=116\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)và\(x^2+y^2+z^2=116\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
Ta có:\(\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
\(\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\)
\(\frac{z^2}{16}=4\Rightarrow z^2=64\Rightarrow\orbr{\begin{cases}z=8\\z=-8\end{cases}}\)
Vậy:\(x=4;y=6;z=8\)hoặc\(x=-4;y=-6;z=-8\)
tìm x,y,z biết :
2x = 3y ; 5y = 7z và 3x + 5y - 7z = 30
3x/2 = y/3 = 7z/4 và x+y+z 134
x/2 = y/3 = z/ và x.y.z = 810
Câu cuối đề chưa rõ ràng , mà cho dù có rõ cùng nên sử dụng đặt bằng k