Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
GIẤU TÊN
Xem chi tiết
ngo thi diem
4 tháng 8 2016 lúc 20:12

minh biet lam cau b)

A B C D N M

ke phan giac AD  , BM vuong goc AD , CN vuong goc AD

sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)

ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)

=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)

dau = xay ra  <=> AD vuong goc BC  => AD la duong phan giac ,la  duong cao  => tam giac ABC can tai  A => AB=AC => b=c

tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)

=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)

ap dung cosi cjo 2 so duong   b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)

=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)

\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)

dau = xay ra <=> a=b=c hay tam giac ABC deu

Do hoang oanh
5 tháng 8 2016 lúc 15:51

nhìn bài toán kho hiểu nhỉ ???

hoàng ngọc nguyên
5 tháng 8 2016 lúc 18:20

mình chịu

Nguyễn Thanh Điền
Xem chi tiết
Nguyễn Thanh Điền
Xem chi tiết
KAl(SO4)2·12H2O
30 tháng 11 2017 lúc 14:16

Kẻ phân giác AD, BK vuông góc với AD.

\(\sin\frac{\widehat{A}}{2}=\sin BAD\)

Xét tam giác AKB vuông tại K, ta có:

\(\sin BAD=\frac{BK}{AK}\left(1\right)\)

Xét tam giác BKD vuông tại K, ta có: 

\(BK\Leftarrow BD\)thay vào (1)

\(\sin BAD\Leftarrow\frac{BD}{AB}\left(2\right)\)

Lại có: \(\frac{BD}{CD}=\frac{AB}{AC}\)

\(\Rightarrow\frac{BD}{\left(BD+CD\right)}=\frac{AB}{\left(AB+AC\right)}\)

\(\Rightarrow\frac{BD}{BC}=\frac{AB}{\left(AB+AC\right)}\)

\(\Rightarrow BD=\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\)thay vào (2)

\(\sin BAD\Leftarrow\frac{\left[\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\right]}{AB}\)

\(=\frac{BC}{\left(AB+AC\right)}\left(ĐPCM\right)\)

Trần Việt Hưng
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Nguyễn Ngọc Anh Minh
19 tháng 1 2021 lúc 9:31

\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)

+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)

+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)

+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)

Khách vãng lai đã xóa

A B C H K

Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)

Ta có : sinA=BKAB ; sinB=AHAB ; sinC=AHAC

⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAH

⇒csinC=bsinB (1)

Lại có : BK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC

⇒asinA=csinC (2)

Từ (1) và (2) ta có : asinA=bsinB=csinC (Đpcm)

Khách vãng lai đã xóa
Phạm Thu Trang
19 tháng 2 2021 lúc 10:08

Kẻ đường kính BD.

ta có góc A = góc D ( góc nội tiếp chắn cung BC) 

=> sinA = sin D

có tam giác BCD vuông tại C => sinD = BD/BC

=> sinA = 2R/a

=> a/sinA=2R 

CMTT ta có b/sinB =2R

c/sinC=2R 

do đó a/sinA=b/sinB=c/sinC=2R

Khách vãng lai đã xóa
Nguyễn Bích Dịu
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Phúc Hồ Thị Ngọc
Xem chi tiết
Megurine Luka
Xem chi tiết
alibaba nguyễn
5 tháng 6 2018 lúc 14:03

Kẽ đường cao AH

\(\Rightarrow\hept{\begin{cases}sinB=\frac{AH}{c}\\sinC=\frac{AH}{b}\end{cases}}\)

\(\Rightarrow AH=c.sinB=b.sinC\)

\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\)

Tương tự ta cũng có

\(\frac{b}{sinB}=\frac{a}{sinA}\)

\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)