Phân tích đa thức thành nhân tử: a³+b³+c³-3abc
ab(a+b)+bc(b+c)+ca(a+c)+3abc
Phân tích đa thức thành nhân tử
ta có: ab(a + b) + bc(b + c) + ac(a + c) + 3abc
= ab(a + b) + abc + bc(b + c) + abc + ac(a + c) + abc
= ab(a + b + c) + bc(a + b + c) + ac(a + b + c)
= (a + b + c)(ab + bc + ca)
Phân tích đa thức thành nhân tử
a^3+b^3+c^3-3abc
Ta có
a3+b3+c3-3abc
=(a+b)3-3ab(a+b)+c3-3abc
=[(a+b)3+c3]-3ab(a+b+c)
=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)
=(a=b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2+b2+c2-ab-ac-bc)
a3+b3+c3-3abc
=(a+b)3-3ab(a+b)+c3-3abc
=[(a+b)3+c3]-3ab(a+b+c)
=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)
=(a=b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2+b2+c2-ab-ac-bc)
a3 + b3 + c3 - 3abc
= [( a3 + b3 ) + c3 ] - 3abc
= [( a + b )3 + c3 + 3ab( a + b )] - 3abc
= [( a + b )3 + c3 ] + 3a2b + 3ab2 - 3abc
= ( a + b + c ) [( a + b )2 - c( a + b ) + c2 ] - 3ab( a + b + c )
= ( a + b + c ) ( a2 + 2ab + b2 - ac - bc + c2 - 3ab )
= ( a + b + c ) ( a2 + b2 + c2 - ab - bc - ac )
= 1/2( a + b + c ) ( 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac )
= 1/2( a + b + c ) [( a2 - 2ab + b2 ) + ( a2 - 2ac + c2 ) + ( b2 - 2bc + c2 )]
= 1/2 ( a + b + c ) [( a - b )2 + ( a - c )2 + ( b - c )2]
Hok Tốt!!!
Phân tích đa thức thành nhân tử:
ab(a + b) + bc(b + c) + ac(a + c) + 3abc
Phân tích đa thức thành nhân tử:
a) M = ( a + b + c ) 3 - a 3 - b 3 - c 3 ;
b) N = a 3 + b 3 + c 3 - 3abc.
Phân Tích Đa Thức thành nhân tử 3abc+a^2(a-b-c)+b^2(b-a-c)+c^2(c-a-b)-c(b-c)(a-c)
Phân tích đa thức thành nhân tử; a^3 +b^3 +b^3 - 3abc
Thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :
Biến đổi vế trái thành:
a^3+b^3+c^3-3abc
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)
Phân tích đa thức thành nhân tử a^3+b^3-c^3+3abc
\(a^3+b^3-c^3+3abc\)
\(=a^3+3ab.\left(a+b\right)+b^3-c^3-3abc-3ab.\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab.\left(a+b-c\right)\)
\(=\left(a+b+c\right).\left(a^2+ab+b^2-ab-ac+c^2\right)-3ab.\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)\)
phân tích đa thức thành nhân tử: a3 + b3 - c3 + 3abc
Câu hỏi của Bắp Ngô - Toán lớp 8 - Học toán với OnlineMath
Tham khảo
Phân tích đa thức thành nhân tử:
\(a^3+b^3+c^3-3abc\)
a3+b3+c3-3abc=(a+b)3+c3-3a2b-3ab2-3abc
=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)
=(a+b+c)(a2+b2+c2-ac-bc-ab)