Phân tích đa thức thành nhân tử bằng phương pháp tách hoặc thêm bớt hạng tử: x^3 - 3x^2 - 4
phân tích đa thức thành tnhân tử bằng phương pháp tách hạng tử hoặc thêm bớt cùng hạng tử
a)\(2x^2+x-6\)
b)\(6x^4+7x^2+2\)
c)\(2x^2-3x-2700\)
a)\(2x^2+x-6=2x^2+4x-3x-6=\left(x+2\right)\left(2x-3\right)\)
b)\(6x^4+7x^2+2=6x^4+4x^2+3x^2+2=\left(3x^2+2\right)\left(2x^2+1\right)\)
c)\(2x^2-3x-2700=2x^2+72x-75x+2700=\left(2x-75\right)\left(x+36\right)\)
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
Phân tích đa thức thành nhân tử bằng cách tách hoặc thêm bớt hạng tử x^2yz + 5xyz -14yz
=yz(x^2+5x-14)
=yz(x^2-2x+7x-14)
=yz[x(x-2)+7(x-2)
=yz(x-2)(x+7)
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
\(x^3+3x^2-4\)
\(x^3+3x^2-4\)
\(=\left(x^3+4x^2\right)-\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x-1\right)\)
Mình nhìn nhầm đề
\(x^3+3x^2-4\)
\(=\left(x^3+2x^2\right)+\left(x^2-4\right)\)
\(=x^2\left(x+2\right)+\left(x-2\right)\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+x-2\right)\)
\(=\left(x+2\right)\left[\left(x^2+x\right)-\left(2x+2\right)\right]\)
\(=\left(x+2\right)\left(x+2\right)\left(x-1\right)\)
\(=\left(x+2\right)^2\left(x-1\right)\)
Phân tích đa thức thành nhân tử:
x^8+x^4+1 bằng phương pháp thêm bớt hạng tử x^2
\(x^8+x^4+1\)
\(=x^4.\left(x^4+1\right)+\left(x^4+1\right)-x^4\)
\(=\left(x^4+1\right).\left(x^4+1\right)-\left(x^2\right)^2\)
\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+1-x^2\right).\left(x^4+1+x^2\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử tự do: 3x^2 - 8x + 4
3x^2 - 8x + 4
= 3x^2 - 6x - 2x + 4
=( 3x^2 - 6x ) - ( 2x - 4)
=3x(x-2) - 2(x-2)
=(3x-2) - (x-2)
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử
a)x^4+1
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-2x^2\)
\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)
Phân tích đa thức thành nhân tử:
\(\text{x^4 + 5x^3 + 10x - 4 }\)(Bằng phương pháp thêm bớt hạng tử)