rut gon : M = 1+7+7^2+7^3+7^4+...................................+7^100
rut gon 1+7^2+7^3+7^4+...+7^99
Đặt \(A=1+7^2+7^3+7^4+...+7^{99}\)
\(\Rightarrow7A=7\left(1+7^2+7^3+7^4+...+7^{99}\right)\)
\(\Rightarrow7A=7+7^3+7^4+7^5+...+7^{100}\)
\(\Rightarrow7A-A=\left(7+7^3+7^4+7^5+...+7^{100}\right)-\left(1+7^2+7^3+7^4+...+7^{99}\right)\)
\(\Rightarrow6A=7^{100}-1\)
\(\Rightarrow A=\frac{7^{100}-1}{6}\)
đặt S = 1 + 72 + 73 + 74 + .... + 799
=> 7S = 7 + 73 + 74 + 75 + .... 7100
=> 7S - S = (7 + 73 + 74 + 75 + .... + 7100) - (1 + 72 + 73 + 74 + .... + 799)
=> 6S = (7 + 7100) - (1 + 72)
=> 6S = (7 - 1) + (7100 - 72)
=> 6S = 6 + 7100 - 72
=> S = \(\frac{6+7^{100}-7^2}{6}\)
rut gon bieu thuc (6x+7)(2x-3)-(4x+1)(3x-7/4)
rut gon 1 + 7 + 7^2 + ... +7^101
Đặt A = 1 + 7 + 72+...+7101
=> 7A = 7 + 72+73+...+7102
=> 7A-A= 7102-1
6A = 7102-1
\(\Rightarrow A=\frac{7^{102}-1}{6}\)
1) Rut gon bieu thuc A = \(\left(4+\sqrt{7}\right).\left(\sqrt{2}-\sqrt{14}\right).\sqrt{4-\sqrt{7}}\)
rut gon
x^7+x^6+x^5+x^4+x^3+x^2+x+1/x^2-1
rut gon A=1+1^ 2+1^ 3+1^4+1^5+1^6+1^7+1^8+1^9+...+1^2012
rut gon bieu thuc :5/11*5/7+5/11*2/7+6/11
=\(\dfrac{5}{11}\left(\dfrac{5}{7}+\dfrac{2}{7}\right)+\dfrac{6}{11}\)
=\(\dfrac{5}{11}\times1+\dfrac{6}{11}\)
=\(\dfrac{11}{11}\)=1
\(\dfrac{5}{11}\cdot\dfrac{5}{7}+\dfrac{5}{11}\cdot\dfrac{2}{7}+\dfrac{6}{11}=\dfrac{5}{11}\cdot\left(\dfrac{5}{7}+\dfrac{2}{7}\right)+\dfrac{6}{11}=\dfrac{5}{11}\cdot1+\dfrac{6}{11}=\dfrac{5}{11}+\dfrac{6}{11}=1\)
rut gon P= 1+-3+5+-7+...+17+-19
P=1+(-3)+5+(-7)+...17+(-19)
P=(-2)+(-2)+...+(-2)
P=(-2). 9,5 ( vì có 9,5 số -2)
P= -19
5 - 2/3 + 1/5
co loi giay nua nha ai lam co loi giai minh thch 7 tich
\(B=\frac{7}{15}+\frac{4}{5}-1=\frac{19}{15}-1=\frac{4}{15}\)
\(5-\frac{2}{3}+\frac{1}{5}=\frac{13}{3}+\frac{1}{5}=\frac{68}{15}\)