Chứng minh rằng:
x10 - 10x + 9 chia hết cho (x-1)2
Chứng minh:
b) x^2 - x^9 - x^1945 chia hết cho x^2 - x - 1
c) x^10 - 10x + 9 chia hết cho (x-1)^2
c) Đặt \(f\left(x\right)=x^{10}-10x+9\)
Giả sử \(f\left(x\right)⋮\left(x-1\right)^2\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)^2Q\left(x\right)\)
\(\Leftrightarrow f\left(1\right)=\left(1-1\right)^2Q\left(1\right)\)
\(=0\)
\(\Leftrightarrow1^{10}-10.1+9=0\)
\(\Leftrightarrow0=0\)( đúng)
\(\Rightarrow\)điều giả sử đúng
\(\Rightarrow f\left(x\right)⋮\left(x-1\right)^2\left(đpcm\right)\)
1.Cho 2x+3y chia hết cho 11 thì 10x+4y chia hết cho 11
2. Cho 3x+2y chia hết cho 12. Chứng minh rằng 10x+y chia hết cho 17
Bài 1:
a) Cho P = 1 + x + x2 + x3 + ... + x9 + x10 . Chứng minh rằng: x.P - P = x11 - 1
b) Cho M = x10 - 10x9 + 10x8 - 10x7 + ... - 10x + 10. Với x = 9. Tính giá trị của biểu thức M
c) Chứng minh: N = 1 + 2 + 22 + 23 + .. + 212 + 213 + 214 chia hết cho 31
Bài 2
a) Tìm m sao cho 2x3 - 3x2 + x + m = (x + 2)(2 - 3x) = 4
b) Tìm a, b biết: (x-3)(2x2 + ax + b) = 2x3 - 8x2 + 9x -9
c) Chứng minh rằng biểu thức n(2n - 3) - 2n(n +1) luôn chia hết cho 5 với mọi số nguyên n
d) Chứng minh n(n + 5) - (n - 3)(n + 2) luôn chia hết cho 6
Bài 3:
Cho a + b + c + d = 0. Chứng minh rằng: a3 + b3 + c3 + d3 = 3(ab - cd)(c + d)
GIÚP MÌNH NHANH VỚI Ạ!!! MÌNH CẢM ƠN!!!
Bài 1:
b:
x=9 nên x+1=10
\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)
=1
c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(1+2^5+2^{10}\right)⋮31\)
Chứng minh rằng:
\(x^{10}-10x+9\)chia hết cho \(x^2-2x+1\)
Bạn nào giải nhanh đúng mình tick cho nha ^ ^.
x2-2x+1 = (x-1)2
x10-10x + 9=x10-9x-x+9=x(x9-1)-9(x-1)
= x(x-1)(...)-9(x-1)
=(x-1)[x(...)-9]
Đoạn ... bạn tự khai triển nha chứ mình đánh máy mỏi lắm :v bạn nhân vô hết rồi tách cái -9 ra làm 9 cái -1 rồi cầm hằng đẳng thức như mình làm của cái x9-1 là sẽ suy ra được thêm một cái nhân tử x-1 như vậy bài toán được chứng minh.
trả lời rõ đi
mh k bt khai triển tiếp
1)Chứng minh rằng
N= 3-10x^3 - 6xy- 57hr+ 96rq chia hết cho x^2yhrq
2) Chứng minh rằng
P = 369^3 - 219^3 chia hết cho 1350
Ta có:\(B=3-10x^2-4xy-4y^2\)
\(=3-9x^2-x^2-4xy-4y^2\)
\(=3-9x^2-\left(x^2+4xy+4y^2\right)\)
\(=3-\left(3x\right)^2-\left(x+2y\right)^2\)
Vì \(\hept{\begin{cases}\left(3x\right)^2\ge0\\\left(x+2y\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}-\left(3x\right)^2\le0\\-\left(x+2y\right)^2\le0\end{cases}}\)
\(\Rightarrow B=3-\left(3x\right)^2-\left(x+2y\right)^2\le3-0-0=3\)
Nên GTLN của B là 3 đạt được khi \(\hept{\begin{cases}3x=0\\x+2y=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=-x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=0\end{cases}\Leftrightarrow}x=y=0\)
Chứng minh rằng :
Đa thức x^10-10x+9 chia hết cho (x-1)^2
M.n ơiii giúp mình bài này với!!!Với lại cho mình hỏi bài này có áp dụng định lí Bơzu được ko vậy?Thanks m.n nhiều!!!
Bài này bạn áp dụng phương pháp hệ số bất định hoặc phương pháp xét giá trị riêng
Cho x - 5y chia hết cho 17 ( Với x,y thuộc Z )
Chứng minh rằng : 10x + y chia hết cho 17
Giúp mình với, PLEASE !!!
x-5y chia hết cho 17
=>10x-50y chia hết cho 17
=>10x+y-51y chia hết cho 17
mà 51y chia hết cho 17
nên 10x+y chia hết cho 17
cho x ;y thỏa mãn 10x+2y chia hết cho 7 và 4x+11y chia hết cho 7 chứng minh rằng x chia hết cho 7 và y chia hết cho 7
cho x, y là các số tự nhiên thỏa mãn x+4y chia hết cho 13. chứng minh rằng 10x+y chia hết cho 13
Bạn tham khảo nhé !
Ta thấy : x+4y ⋮13
=> 10.(x + 4y ) ⋮13
=> 10x + 40y ⋮ 13
=> 10x + y + 39y ⋮ 13
mà 39y chia hết cho 13
=>10x+y ⋮ 13
x+4y13
=>10.(x+4y)13
10x+40y13
10x+y+39y13
mà 39y chia hết cho 13
=>10x+y13