Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Mỹ Nhã
Xem chi tiết
palace darkness
18 tháng 1 2016 lúc 19:04

a)=-18790

b)=-1008

Vũ Thị Quỳnh Phương
Xem chi tiết
Sahara
18 tháng 3 2023 lúc 20:51

\(M=\dfrac{3}{1\times2}+\dfrac{3}{2\times3}+\dfrac{3}{3\times4}+...+\dfrac{3}{2015\times2016}+\dfrac{3}{2016\times2017}\)
\(=3\times\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{2015\times2016}+\dfrac{1}{2016\times2017}\right)\)
\(=3\times\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)
\(=3\times\left(1-\dfrac{1}{2017}\right)\)
\(=3\times\dfrac{2016}{2017}\)
\(=\dfrac{6048}{2017}\)
#DatNe

vinzoi cặp đôi bá đạo
Xem chi tiết
Orange Sakura Ta
Xem chi tiết
Khánh Linh
22 tháng 4 2016 lúc 21:12

 53463655645

Rinu
Xem chi tiết
Nguyễn Đức Quang
16 tháng 7 2019 lúc 11:29

(1-1/1.2)+(1-1/2*3)+......+(1-1/2015*2016)

=(0/1*2)+(0+2*3)+..........+(0/2015*2016)

=0

Phạm Hữu Nam chuyên Đại...
16 tháng 7 2019 lúc 12:00

tui nghĩ cái đề phải như thế này  \(\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+...+\left(1-\frac{1}{2015.2016}\right)\)

nguyen minh hieu
24 tháng 7 2019 lúc 14:08

=0 con minh ko giai

tran thi quynh nhu
Xem chi tiết
KAl(SO4)2·12H2O
29 tháng 7 2019 lúc 20:44

\(\left(2013.2014+2014.2015+2015.2016\right).\left(1+\frac{1}{3}-1-\frac{1}{3}\right)\)

\(=\left(2013.2014+2014.2015+2015.2016\right).0\)

= 0

Đào Thị Lê Na
Xem chi tiết
Tạ Thanh Duyên
Xem chi tiết
Can hold us
Xem chi tiết
Lã Nguyễn Gia Hy
13 tháng 8 2017 lúc 20:03

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{102}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{101}{102}=\frac{1}{102}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}=\frac{C}{D}\)

Ta có: \(D=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)(có 2015 số hạng)

          \(D=\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)-2015\)

          \(D=2016+\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}-2015\)

          \(D=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+1=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+\frac{2016}{2016}\)

          \(D=2016\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)=2016C\)

Vậy \(B=\frac{C}{D}=\frac{C}{2016C}=\frac{1}{2016}\)

Đức Phạm
14 tháng 8 2017 lúc 10:36

\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{102}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{101}{102}=\frac{1\cdot2\cdot3\cdot....\cdot101}{2\cdot3\cdot4\cdot....\cdot102}\)

\(A=\frac{1}{102}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)+1}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2016}{2}+...+\frac{2016}{2015}+\frac{2016}{2016}}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}=\frac{1}{2016}\)