Cho 2 số hữu tỉ khác nhau a phần b và c phần d. b > 0, d > 0. Tìm 1 số hữu tỉ nằm giữa 2 số trên
Cho a;b;c;d là các số nguyên dương và thỏa mãn: (a/b)<(c/d). tìm một số hữu tỉ x sao cho (a/b)<x<(c/d), từ đó chúng minh rằng ta có thể tìm được các số hữu tỉ khác nhau nằm giữa hai số 1 và 2 (khi biểu diễn trên trục số) mà tổng của chúng lớn hớn 2023 (giải theo trình độ lớp 7)
a) Tìm 3 số hữu tỉ nằm giữa -1 phần 2 và -1 phần 3
b) Tìm 5 số hữu tỉ nằm giữa -1 phần 5 và 1 phần 5
1, Cho 2 số hữu tỉ a/b và c/d (b>0, d>0)
Chứng tỏ rằng:
Nếu a/b < c/d => a/b < a+c/ b+d < c/d
2, Áp dụng hẫy viết:
* Ba số hữu tỉ chen giữa hai số hữu tỉ -1/2 và -1/3
* Năm số hữu tỉ chen giữa hai số hữu tỉ -1/5 và 1/5.
a)có thể kết luận gì về số hữu tỉ a/b (a,b thuộc Z,b khác 0)
b)cho a,b,n thuộc Z và b>0,n>0
hãy so sánh hai số hữu tỉ a/b và a+n/b+n
c)chứng tỏ rằng trên trục số ,giữa 2 điểm biểu diễn hai số hữu tỉ khác nhau bao giờ cũng có ít nhất một điểm hữu tỉ nữa
d)so sánh
2/7 và 4/9,-17/25 và -14/28;-31/19 và -21/29
a) Số hữu tỉ là số được viết dưới dạng \(\frac{a}{b}\)
d) \(\frac{2}{7}=\frac{18}{63}\) ; \(\frac{4}{9}=\frac{28}{63}\) Vì 18 < 28 mà 63 = 63
=> \(\frac{2}{7}< \frac{4}{9}\)
\(\frac{-17}{25}=\frac{-476}{700}\) ; \(\frac{-14}{28}=\frac{-350}{700}\) Vì -476 < -350 mà 700=700
=> \(\frac{-17}{25}< \frac{-14}{28}\)
cho hai số hữu tỉ a/b<c/b(a;b;c;d>0) CMR có vô số số hữu tỉ nằm giữa 2 số đã cho
5, chứng minh rằng trên trục số giữa hai điểm hữu tỉ tùy ý a/b và c/d ( a,b,c, d thuộc z ;b,d khác 0)luôn tồn tại một điểm hữu tỉ khác.
‐ Ta có trên trục số \(2\) điểm \(A\) và \(B\) lần lượt là :\(\frac{a}{b},\frac{c}{d}\)
mà trên trục số\(\frac{a}{b}\) nằm bên trái\(\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{c}{d}\)
‐ Như ta đã biết : Nếu\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Mà kí hiệu\(\frac{a+c}{b+d}\) là \(C\)
Vậy ta luôn có \(C\) nằm giữa \(A,B\)
\(\Rightarrow\) Trên trục số,giữa \(2\) điểm biểu diễn \(2\) số hữu tỉ \(\frac{a}{b}\) và\(\frac{c}{d}\)
luôn tồn tại \(1\) điểm biểu diễn số hữu tỉ khác \(\left(DPCM\right)\)
NHỚ TK MK NHA
CÁCH 2 NÈ
+) Nếu\(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow2.\frac{a}{b}>\frac{a}{b}+\frac{c}{d}>2.\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}>\frac{\frac{a}{b}+\frac{c}{d}}{2}>\frac{c}{d}\)
\(\Rightarrow\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa 2 điểm \(\frac{a}{b}\) và\(\frac{c}{d}\)trên trục số\(\left(1\right)\)
Tương tự:
+)Nếu\(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{\frac{a}{b}+\frac{c}{d}}{2}< \frac{c}{d}\)
\(\Rightarrow\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa 2 điểm\(\frac{a}{b}\) và\(\frac{c}{d}\)trên trục số\(\left(2\right)\)
Từ\(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\)trên trục số giữa hai điểm hữu tỉ tùy ý a/b và c/d ( a,b,c, d thuộc z ;b,d khác 0)luôn tồn tại một điểm hữu tỉ khác.
NHỚ TK MK NHA
Cho 3 số hữu tỉ a/b và c/d với b>0,d>0.Chứng tỏ nếu a/b<c/d thì a/b<a+c/b+d<c/d
viết 3 số hữu tỉ giữa -1/2 và -1/3
viết 5 số hữu tỉ giữa -1/5 và 1/5
giúp mị nha mị nha mị sẽ tick
Ta có:
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)=>ad+ab<bc+ab
=>a(b+d)>b(a+c)
=>\(\frac{a}{b}< \frac{a+c}{b+d}\) (1)
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)=>ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>\(\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)(đpcm)
---------------
\(\frac{-1}{3}=\frac{-8}{24}>\frac{-9}{24}>\frac{-10}{24}>\frac{-11}{24}>\frac{-12}{24}=\frac{-1}{2}\)
---------------
\(\frac{-1}{5}< \frac{-1}{4}< \frac{-1}{3}< \frac{-1}{2}< -1< 0< \frac{1}{5}\)
\(\frac{-1}{2}=\frac{\left(-1\right).12}{2.12}=\frac{-12}{24}\)
\(\frac{-1}{3}=\frac{\left(-1\right).8}{3.8}=\frac{-8}{24}\)
\(\frac{-8}{24}< x< \frac{-12}{24}\)
\(\Rightarrow x=\left\{\frac{-9}{24};\frac{-10}{24};\frac{-11}{24}\right\}\)
-4/2>-4/7>-2/3>-4/5>-4/3
-3/5<-2/5<-1/5<0/5<1/5<2/5<3/5
Bài 1: Các câu sau, câu nào đúng,câu nào sai?
a) Mọi số hữu tỉ dương đều lớn hơn 0
b) Nếu a là số hữu tỉ âm thì a là số tự nhiên
c) Nếu a là số tự nhiên thì a là số hữu tỉ âm
d) 0 là số hữu tỉ dương
Bài 2: Cho 2 số hữu tỉ a/b và c/d với b,d>0
Chứng minh: Nếu \(\frac{a}{b}< \frac{c}{d}\) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Vận dụng: Viết 2 số xen giữa 2 số hữu tỉ -1/5 và 1/5
Bài 1: Các câu sau, câu nào đúng,câu nào sai?
a) Mọi số hữu tỉ dương đều lớn hơn 0 Đ
b) Nếu a là số hữu tỉ âm thì a là số tự nhiên S
c) Nếu a là số tự nhiên thì a là số hữu tỉ âm S
d) 0 là số hữu tỉ dương S
a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a+c/b + d < c/d
cho a/b > c/d ( b>0, d>0)
cmr:
c/d < c+a/d+b < a/b.
từ đó suy ra giữa 2 số hữu tỉ x>y bao giờ cũng có vô số số hữu tỉ khác