Tính:\(A=\frac{2x+y}{2x^2-xy}+\frac{16x}{y^2-4x}\)\(+\frac{2x-y}{2x^2+xy}\)
8,Thực hiện phép tính
a,\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
b,\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
c,\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
d,\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
e,\(\frac{2x+y}{2x^2-xy}+\frac{16x}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
f,\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
Thực hiện phép tính
\(\frac{2x+y}{2x^2-xy}+\frac{8y}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
thực hiện phép tính \(\frac{2x+y}{2x^2-xy}+\frac{16}{y^2-4x^2}+\frac{2-y}{2x^2+xy}\)
CM tổng sau :
\(\frac{2x+y}{2x^2-xy}+\frac{8y}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}=\frac{2.\left(2x-y\right)}{x.\left(2x+y\right)}.\)
Tính
\(\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}\)
\(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)
\(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}\)
1) \(\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}\)
\(=\frac{-4x^2+8x-4}{-4x^3+4x^2+4x-4}\)
\(=\frac{-x^2+2x-1}{-x^3+x^2+x-1}\)
\(=\frac{\left(-x+1\right)\left(x-1\right)}{\left(-x-1\right)\left(x-1\right)\left(x-1\right)}\)
\(=\frac{1}{x+1}\)
2) \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)
\(=\frac{-16x^3+16x^2-4x}{-16x^4+16x^3-4x^2}\)
\(=\frac{-16x^2+16x-4}{-16x^3+16x^2-4x}\)
\(=\frac{-4x^2+4x-1}{-4x^3+4x^2-x}\)
\(=\frac{\left(-2x+1\right)\left(2x-1\right)}{x\left(-2x+1\right)\left(2x-1\right)}\)
\(=\frac{1}{x}\)
cộng trừ các phân thức
\(\frac{2x+y}{2x^2-xy}+\frac{8y}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
\(\frac{2x+y}{2x^2-xy}+\frac{8y}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
\(=\frac{2x+y}{x\left(2x-y\right)}-\frac{8y}{\left(2x-y\right)\left(2x+y\right)}+\frac{2x-y}{x\left(2x+y\right)}\)
\(=\frac{\left(2x+y\right)^2-8xy+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}=\frac{4x^2+4xy+y^2-8xy+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\frac{8x^2-8xy+2y^2}{x\left(2x-y\right)\left(2x+y\right)}=\frac{2\left(4x^2-4xy+y^2\right)}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\frac{2\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}=\frac{2\left(2x-y\right)}{x\left(2x+y\right)}\)
2) Giải phương trình
a) \(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
b) \(\left(2x+3\right).\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right).\left(\frac{3x+8}{2-7x}+1\right)\)
3) Rút gọn
a) \(\frac{2x-1}{x^3+1}+\frac{2x}{x^2-x+1}+\frac{-x}{x+1}+2\)
b) \(\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}+\frac{1}{1-x}-1,5\)
c) \(\left(\frac{x^2}{x^3-4x}-\frac{6}{3x-6}+\frac{1}{x+2}\right).\frac{x+2}{6}\)
d) \(\left(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}\right):\frac{x^2-2xy+y^2}{x^2y-xy^2}\)
e) \([\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}-\frac{1}{\left(2x+y\right)^2}].\frac{x^2+4xy+y^2}{16x}\)
Mn giúp mik vs mik đang cần gấp
\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)
Vậy pt có vô số nghiệm
\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)
Mấy câu rút gọn bạn quy đồng nha
bài 4 tính
a, \(\frac{2x^2-10xy}{2xy}\)+\(\frac{5y-x}{y}\)
b, \(\frac{2}{x+y}+\frac{1}{x-y}+\frac{3x}{x^2-y^2}\)
c, x+y+\(\frac{x^2+y^2}{x+y}\)
bài 2 .dùng quy tắc biến đổi dấu để tìm MTC rồi thực hiện phếp tính
1a, \(\frac{4}{x+2}+\frac{3x-2}{x-2}+\frac{5x-6}{4-x^2}\)
b,\(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4x^2}\)
c. \(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}\)
d, \(\frac{2x+y}{2x^2-xy}+\frac{16x}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
e,\(\frac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\frac{2}{x^2+3}+\frac{1}{x+1}\)
Bài 4:
a) \(\frac{2x^2-10xy}{2xy}+\frac{5y-x}{y}\)
\(=\frac{y.\left(2x^2-10xy\right)}{2xy.y}+\frac{2xy.\left(5y-x\right)}{2xy.y}\)
\(=\frac{2x^2y-10xy^2}{2xy^2}+\frac{10xy^2-2x^2y}{2xy^2}\)
\(=\frac{2x^2y-10xy^2+10xy^2-2x^2y}{2xy^2}\)
\(=\frac{0}{2xy^2}\)
\(=0.\)
b) \(\frac{2}{x+y}+\frac{1}{x-y}+\frac{3x}{x^2-y^2}\)
\(=\frac{2}{x+y}+\frac{1}{x-y}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)
\(=\frac{2.\left(x-y\right)}{\left(x-y\right).\left(x+y\right)}+\frac{1.\left(x+y\right)}{\left(x-y\right).\left(x+y\right)}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)
\(=\frac{2x-2y}{\left(x-y\right).\left(x+y\right)}+\frac{x+y}{\left(x-y\right).\left(x+y\right)}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)
\(=\frac{2x-2y+x+y+3x}{\left(x-y\right).\left(x+y\right)}\)
\(=\frac{6x-y}{\left(x-y\right).\left(x+y\right)}\)
c) \(x+y+\frac{x^2+y^2}{x+y}\)
\(=\frac{x+y}{1}+\frac{x^2+y^2}{x+y}\)
\(=\frac{\left(x+y\right).\left(x+y\right)}{x+y}+\frac{x^2+y^2}{x+y}\)
\(=\frac{\left(x+y\right)^2}{x+y}+\frac{x^2+y^2}{x+y}\)
\(=\frac{x^2+2xy+y^2}{x+y}+\frac{x^2+y^2}{x+y}\)
\(=\frac{x^2+2xy+y^2+x^2+y^2}{x+y}\)
\(=\frac{2x^2+2xy+2y^2}{x+y}.\)
Chúc bạn học tốt!
a)\(\frac{2x+4}{10}+\frac{2-x}{15}\)
b)\(\frac{3x}{10}+\frac{2x-1}{15}+\frac{2-x}{20}\)
c)\(\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}\)
d)\(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-2x^2}\)
e)\(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}\)
f)\(\frac{x^2}{x^2-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\)
\(a,\frac{2x+4}{10}+\frac{2-x}{15}=\frac{\left(2x+4\right).3}{10.3}+\frac{\left(2-x\right).2}{15.2}\)
\(=\frac{6x+12}{30}+\frac{4-2x}{30}=\frac{6x+12+4-2x}{30}=\frac{4x+16}{30}\)
\(=\frac{4.\left(x+4\right)}{30}=\frac{2\left(x+4\right)}{15}\)
\(b,\frac{3x}{10}+\frac{2x-1}{15}+\frac{2-x}{20}=\frac{3x.6}{10.6}+\frac{\left(2x-1\right).4}{15.4}+\frac{\left(2-x\right).3}{20.3}\)
\(=\frac{18x}{60}+\frac{8x-4}{60}+\frac{6-3x}{60}=\frac{18x+8x-4+6-3x}{60}=\frac{23x+2}{60}\)
\(c,\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}=\frac{x+1}{2\left(x-1\right)}+\frac{x^2+3}{2\left(1-x^2\right)}=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x^2-1\right)}\)
\(=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\frac{2x-2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{1}{x+1}\)