2017/căn 2018+2018/căn 2017 so sánh với căn 2017 + căn 2018
Mất bạn giúp mình với nha
So sánh: a. 2 căn 3 —1 và căn 5 + 1/2
b. 3 — căn 10 và căn 5 — 2
c. \(\frac{2018}{\sqrt{2017}}+\frac{2017}{\sqrt{2018}}\)
chứng minh căn 2016 - 2* căn 2017 + căn 2018 < 0
cần CM: \(\sqrt{2018}+\sqrt{2016}< \)\(2\sqrt{2017}\)
<=> \(2018+2016+2\sqrt{2018\cdot2016}< \)\(4\cdot17\)
<=>\(\sqrt{2018\cdot2016}< \)\(17\)
<=>\(\sqrt{2017^2-1}\)\(< \sqrt{2017^2}\) (BĐT luôn đúng)
Do đó \(\sqrt{2016}-2\sqrt{2017}+\sqrt{2018}< 0\)
Chứng tỏ A> căn 2017/2018
tìm GTNN của A=căn bậc hai của x-2017 + |y-2018|+(z+2019)^2000+2019
GTNN là 2019 nhé
so sánh căn 2019 - căn 2017 với căn 19 - căn 17
Giúp mình bài này với
Tính GTBT
P= căn (1+ 1/2² + 1/3²) + căn (1+ 1/3² +1/4²) +...+ căn(1 + 1/2017² + 1/2018²)
so sánh: A= 2017+2018/2018+2019 với B= 2017/2018+2018/2019
So sánh 2017^2016+2018/2017^2017+2018với 2017^2017+2018/2017^2018+2018
Ai kết bạn mình đi
so sánh : P = 2016/2017 + 2017/2018 + 2018/2019 và Q = 2016 + 2017 + 2018/2017 + 2018 + 2019
Ta có :
\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow P>Q\)
Chúc bạn học tốt !!!
vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q
Vậy P<Q.
mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá
Đơn giản P < Q
Vì Nhìn sơ qua ta thấy tổng P gồm các phân số bé hơn 1
Tổng Q có 3 phân số lớn hơn 1