Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Thi Khanh Huyen
Xem chi tiết
Đoàn Đức Hà
15 tháng 1 2021 lúc 21:32

Với \(n\ge5\)

\(1!+2!+3!+4!+5!+...+n!\equiv\left(1!+2!+3!+4!\right)\left(mod10\right)\equiv3\left(mod10\right)\)

Vì \(k!=1.2.3.....k=\left(2.5\right).1.3.4.6.....k\)(Với \(k\ge5\))

mà số chính phương không thể có tận cùng là \(3\)nên loại. 

Tính trực tiếp với các trường hợp \(n=1,2,3,4\)ta được \(n=1\)và \(n=3\)thỏa mãn. 

Khách vãng lai đã xóa
Nguyen tien dung
Xem chi tiết

 Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Nguyen Anh Tung
11 tháng 4 2016 lúc 20:37

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

đinh huế
11 tháng 4 2016 lúc 20:38

 Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 

Tên tôi là Thành
Xem chi tiết
Đỗ Quốc Khánh
23 tháng 4 2016 lúc 14:21

Gọi A(n) = 1 + 2

Với n = 1 => A1 = 1 = 1 =  là một số chính phương

                =>n = 1 (TM)

Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương

              =>n = 2 (KTM)

Với n = 3 => A3 =  =1 + 2 + 6 = 9 =  là một số chính phương

            =>n = 3 (TM)

Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương

Với n

Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5

Nên n có chữ số tận cùng là 3

Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9

=>n = 5(KTM)

Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương

Đỗ Quốc Khánh
23 tháng 4 2016 lúc 14:26

Gọi A(n) = 1 + 2

Với n = 1 => A1 = 1 = 1 =  là một số chính phương

                =>n = 1 (TM)

Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương

              =>n = 2 (KTM)

Với n = 3 => A3 =  =1 + 2 + 6 = 9 =  là một số chính phương

            =>n = 3 (TM)

Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương

Với n

Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5

Nên n có chữ số tận cùng là 3

Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9

=>n = 5(KTM)

Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương

Nguyễn Thị Kim Khánh
Xem chi tiết
Nguyễn Thị Thu Hà
Xem chi tiết
Lê Trọng
26 tháng 6 2016 lúc 20:31

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Viên đạn bạc
26 tháng 6 2016 lúc 20:32

+)  Với n = 1 thì 1! = 1 = 1² là số chính phương . 
+)  Với n = 2 thì 1! + 2! = 3 không là số chính phương 
+)  Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
+)  Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3

응 우옌 민 후엔
Xem chi tiết
Nguyễn Mạnh Trung
Xem chi tiết
Võ Đông Anh Tuấn
6 tháng 2 2016 lúc 21:56

A)(0;0)(1;1)

B)Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Nguyễn Văn Việt Dũng
6 tháng 2 2016 lúc 21:51

a)xy=x+y

=>xy-x-y=0

=>x(y-1)-(y-1)-1=0

=>x(y-1)-(y-1)=1

=>(y-1)(x-1)=1

=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0

b)Câu này khó quá nhưng ủng hộ nha

hellokute6a1
Xem chi tiết
Quang Ánh
Xem chi tiết