Rút gọn A=\(\left(1-\frac{4}{1^2}\right)\left(1-\frac{4}{3^2}\right).....\left(1-\frac{4}{199^2}\right).\)
Rút gọn
\(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right).....\left(15^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right).....\left(16^4+\frac{1}{4}\right)}\)
Rút gọn :
\(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(51^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(52^4+\frac{1}{4}\right)}\)
\(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right).....\left(51^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)....\left(52^4+\frac{1}{4}\right)}\)
\(=\frac{\left(1+1+\frac{1}{2}\right)\left(1-1+\frac{1}{2}\right)....\left(11^2-11+\frac{1}{2}\right)}{\left(2+2^2+\frac{1}{2}\right)\left(2^2-2+\frac{1}{2}\right)....\left(12^2-12+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)....\left(11.12+\frac{1}{2}\right)}{\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)....\left(12.13+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}}{12.13+\frac{1}{2}}\)
\(=\frac{1}{313}\)
Chúc bạn học tốt !!!
Rút gọn: \(\frac{\left(\frac{-1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\)
\(\frac{\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3-\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\) Rút gọn
Rút gọn: \(\frac{\left(\frac{-1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\)
rút gọn:\(\frac{\left(\frac{-1}{3}\right)^2-\left(\frac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\)
\(\frac{\left(-\frac{1}{3}\right)^2-\left(\frac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}=\frac{\frac{1}{9}-\frac{27}{64}.4}{-2+\frac{9}{16}-\frac{3}{8}}=\frac{\frac{1}{9}-\frac{27}{16}}{-2+\frac{3}{16}}\)
\(=\frac{\frac{16}{144}-\frac{243}{144}}{-\frac{32}{16}+\frac{3}{16}}=\frac{\frac{-227}{144}}{\frac{-29}{16}}=\frac{-227}{144}.\frac{-16}{29}\)
\(=\frac{227.16}{144.29}=\frac{227.1}{9.29}=\frac{227}{261}\)
Đáp số: \(\frac{227}{261}\)
Rút gọn: \(S=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(2004^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(2005^4+\frac{1}{4}\right)}\)
Đề hơi nhầm 1 xíu nhé, 2004 ở dưới và 2005 ở trên :v
Rút gọn
\(\frac{\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3-\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\)
Câu hỏi: Rút gọn biểu thức A = \(\frac{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)....\left(\left(2k\right)^4+\frac{1}{4}\right)}{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)....\left(\left(2k-1\right)^4+\frac{1}{4}\right)}\) (k thuộc N*)