Tính nhanh :
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\)
bài 1: tính nhanh
a, \(\frac{\frac{1}{2}-\frac{1}{3}-\frac{1}{4}}{1-\frac{2}{3}-\frac{1}{2}}\)-\(\frac{\frac{3}{5}-\frac{3}{7}-\frac{3}{11}}{\frac{6}{5}-\frac{6}{7}-\frac{6}{11}}\)
b,\(1\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{3}{20}+...+\frac{3}{2011.2012}\)
a,Ta có \(\frac{\frac{1}{2}-\frac{1}{3}-\frac{1}{4}}{1-\frac{2}{3}-\frac{1}{2}}-\frac{\frac{3}{5}-\frac{3}{7}-\frac{3}{11}}{\frac{6}{5}-\frac{6}{7}-\frac{6}{11}}\)
\(=\frac{\frac{1}{2}-\frac{1}{3}-\frac{1}{4}}{2.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)}-\frac{3.\left(\frac{1}{5}-\frac{1}{7}-\frac{1}{11}\right)}{6.\left(\frac{1}{5}-\frac{1}{7}-\frac{1}{11}\right)}\)
=\(\frac{1}{2}-\frac{3}{6}=\frac{1}{2}-\frac{1}{2}=0\)
Vậy giá trị biểu thức bằng 0
b, Mình không hiểu cho lắm ạ , nếu ko phiền xin xem lại đầu bài ạ
BÀi 1: Thực hiện phép tính ( tính nhanh nếu có thể)
a.\(\left(-\frac{1}{2}\right)-\left(-\frac{3}{5}\right)+\left(-\frac{1}{9}\right)+\frac{1}{71}-\left(-\frac{2}{7}\right)+\frac{4}{35}-\frac{7}{18}\)
b.\(\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5-\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)
c.\(\frac{3}{5}:\left(\frac{-1}{15}-\frac{1}{6}\right)+\frac{3}{5}:\left(\frac{1}{3}-1\frac{1}{15}\right)\)
Bài 1 : tính theo cách hợp lý nhất
\(\frac{6}{11}+\frac{1}{3}+\frac{5}{11}\)
Bài 2 : Tính bằng cách nhanh nhất
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
Bài 3 : Tính nhanh
a,\(\frac{3}{2}\times\frac{4}{5}\times\frac{2}{3}\)
b,\(\frac{6}{7}\times\subset\frac{5}{3}\times\frac{7}{6}\supset\)
Bài 4 : Tính nhanh
a,\(\frac{2}{5}\times\frac{1}{4}+\frac{3}{4}\times\frac{2}{5}\)
b,\(\frac{6}{11}\div\frac{2}{3}+\frac{5}{11}\div\frac{2}{3}\)
bài 1:
\(\frac{6}{11}+\frac{1}{3}+\frac{5}{11}\)
\(=\left(\frac{6}{11}+\frac{5}{11}\right)+\frac{1}{3}\)
\(=\frac{11}{11}+\frac{1}{3}=1+\frac{1}{3}=\frac{3}{3}+\frac{1}{3}=\frac{4}{3}\)
bài 2:
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
\(=\left(\frac{1}{2}+\frac{1}{20}\right)+\left(\frac{1}{6}+\frac{1}{12}\right)\)
\(=\frac{11}{20}+\frac{1}{4}=\frac{11}{20}+\frac{5}{20}=\frac{15}{20}=\frac{3}{4}\)
bài 3:
a) \(\frac{3}{2}\cdot\frac{4}{5}\cdot\frac{2}{3}=\left(\frac{3}{2}\cdot\frac{2}{3}\right)\cdot\frac{4}{5}=1\cdot\frac{4}{5}=\frac{4}{5}\)
b) \(\frac{6}{7}\cdot\frac{5}{3}\cdot\frac{7}{6}=\left(\frac{6}{7}\cdot\frac{7}{6}\right)\cdot\frac{5}{3}=1\cdot\frac{5}{3}=\frac{5}{3}\)
bài 4:
a) \(\frac{2}{5}\cdot\frac{1}{4}+\frac{3}{4}\cdot\frac{2}{5}=\frac{2}{5}\cdot\left(\frac{1}{4}+\frac{3}{4}\right)=\frac{2}{5}\cdot1=\frac{2}{5}\)
b) \(\frac{6}{11}:\frac{2}{3}+\frac{5}{11}:\frac{2}{3}=\left(\frac{6}{11}+\frac{5}{11}\right):\frac{2}{3}=1:\frac{2}{3}=\frac{3}{2}\)
Bài 1:
6/11 + 1/3 + 5/11
= ( 6/11 + 5/11) + 1/3
= 11/11 + 1/3
= 1 + 1/3
= 3/3 +1/3
= 4/3
Bài 2:
1/2 + 1/6 + 1/12 + 1/20
= ( 1/2 + 1/6 + 1/12 ) + 1/20
= ( 6/12 + 2/12 + 1/12 ) + 1/20
=9/12 + 1/20
= 3/4 +1/20
= 15/20 + 1/20
= 16/20 = 4/5
Bài 3:
a) \(\frac{3}{2}\times\frac{4}{5}\times\frac{2}{3}\) \(=\left(\frac{3}{2}\times\frac{2}{3}\right)\times\frac{4}{5}\)\(=1\times\frac{4}{5}=\frac{4}{5}\)
b) \(\frac{6}{7}\times\left(\frac{5}{3}\times\frac{7}{6}\right)\) \(=\frac{6}{7}\times\frac{35}{18}\)\(=\frac{1\times5}{7\times3}=\frac{5}{21}\)
Bài 4:
a) 2/5 x 1/4 + 3/4 x 2/5
= 2/5 x ( 1/4 + 3/4)
= 2/5 x 1
= 2/5
b) 6/11 : 2/3 +5/11 : 2/3
= ( 6/11 + 5/11) x 3/2
= 11/11 x 3/2
= 1 x 3/2
= 3/2
....
Tính nhanh :
\(C=\frac{1}{3}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{57}+\frac{-1}{36}+\frac{1}{15}+\frac{-2}{9}\)
\(D=\frac{1}{2}+\frac{-1}{5}+\frac{-5}{7}+\frac{1}{6}+\frac{-3}{35}+\frac{1}{3}+\frac{1}{41}\)
\(E=\frac{-1}{2}+\frac{3}{5}+\frac{-1}{9}+\frac{1}{127}+\frac{-7}{18}+\frac{4}{35}+\frac{2}{7}\)
C = 1/3 + -3/4 + 3/5 + 1/57 + -1/36 + 1/15 + -2/9
C = ( 1/3 + 1/57 ) + ( -3/4 + -1/36 ) + ( 3/5 + 1/15 ) + -2/9
C = ( 19/57 + 1/57 ) + ( -27/36 + -1/36 ) + ( 9/15 + 1/15 ) + -2/9
C = 20/57 + -28/36 + 10/15 + -2/9
C = 20/57 + -7/9 + 2/3 + -2/9
C = ( 20/57 + 2/3 ) + ( -7/9 + -2/9 )
C = 58/57 + -1
C = 1/57
D = 1/2 + -1/5 + -5/7 + 1/6 + -3/35 + 1/3 + 1/41
D = ( 1/2 + 1/3 + 1/6 ) + ( -1/5 + -5/7 +-3/35 ) + 1/41
D = ( 3/6 + 2/6 + 1/6 ) + ( -7/35 + -25/35 + -3/35 ) + 1/41
D = 1 + -1 + 1/41
D = 1/41
E = -1/2 + 3/5 + -1/9 + 1/127 + -7/18 + 4/35 + 2/7
E = ( -1/2 + -1/9 + -7/18 ) + ( 3/5 + 4/35 ) + 1/127 + 2/7
E = ( -9/18 + -2/18 + -7/18 ) + ( 21/35 + 4/35 ) + 1/127 + 2/7
E = -1 + 5/7 + 1/257 + 2/7
E = -1 + ( 5/7 + 2/7 ) + 1/127
E = -1 + 1 + 1/127
E = 1/127
\(C=\frac{1}{3}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{57}+\frac{-1}{36}+\frac{1}{15}+\frac{-2}{9}.\)
\(C=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{1}{36}+\frac{2}{9}\right)+\frac{1}{57}\)
\(C=1-1+\frac{1}{57}\)
\(C=\frac{1}{57}\)
D=1/2+-1/5+-5/7+1/6+-3/35+1/3+1/41
D=(1/2+1/6+1/3)-(1/5+3/35+5/7)+1/41
D=1-1+1/41
D=1/41
E=-1/2+3/5+-1/9+1/127+-7/18+4/35+2/7
E=(3/5+4/35+2/7)-(1/2+1/9+7/18)+1/127
E=1-1+1/127
E=1/127
tính nhanh
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{481}{280}\)
Tính nhanh:\(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}:\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)
Bài 1 Thưc hiện phép tính ( tính nhanh nếu có thể)
a)\(\frac{-1}{24}-\left[\frac{1}{4}-\left(\frac{1}{2}-\frac{7}{8}\right)\right]\)
b)\(\left(\frac{5}{7}-\frac{7}{5}\right)-\left[\frac{1}{2}-\left(\frac{-2}{7}-\frac{1}{10}\right)\right]\)
C)\(\left(\frac{-1}{2}\right)-\left(\frac{-3}{5}\right)+\left(\frac{-1}{9}\right)+\frac{1}{17}-\left(\frac{-2}{7}\right)+\frac{4}{35}-\frac{7}{18}\)
d)\(\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5-\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)
Tính nhanh: \(\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\frac{6}{4!+5!+6!}+\frac{7}{5!+6!+7!}+\frac{8}{6!+7!+8!}\)
Đặt P = ... ( biểu thức đề bài )
Nhận xét: Với \(k\inℕ^∗\) ta có:
\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)
\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)
Tính nhanh :
\(\frac{1}{5}\times\frac{1}{7}+\frac{4}{5}+\frac{1}{5}\times\frac{12}{7}-1-\frac{1}{5}\times\frac{6}{7}\).
\(\frac{1}{5}\cdot\frac{1}{7}+\frac{4}{5}+\frac{1}{5}\cdot\frac{12}{7}-1-\frac{1}{5}\cdot\frac{6}{7}\)
\(=\frac{1}{5}\cdot\left(\frac{1}{7}+\frac{12}{7}-\frac{6}{7}\right)-\left(1-\frac{4}{5}\right)\)
\(=\frac{1}{5}.1-\frac{1}{5}\)
\(=\frac{1}{5}-\frac{1}{5}=0\)