Tính A = 3+ 3/1+2 + 3/1+2+3 + 3/ 1+2+3+4 + .........+3/1+2+3+4+...+100
1)Tính nhanh: A=1+3+3^2+3^3+3^4+...+3^100
B= 1+4^2+4^4+4^6+...+4^100
2) Cho biết 1^2+2^3+3^2+4^2+...+10^2= 385
Tính a) S1= 2^2+4^2+...+20^2
. b) S2= 100^2+200^2+...1000^2
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
Tính A=3+3/1+2+3/1+2+3+3/1+2+3+4+..+3/1+2+3+4+......+100
Tính:
A=(1-1/1+2).(1-1/1+2+3).(1-1/1+2+3+4)...(1-1/1+2+3+4+...+2022)
B=1+1/2(1+2)+1/3(1+2+3)+1/100(1+2+3+...+100)
a: Ta có công thức tổng quát:
\(1-\frac{1}{1+2+\cdots+n}\)
\(=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}\)
\(=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)
Ta có: \(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\cdot\ldots\cdot\left(1-\frac{1}{1+2+\cdots+2022}\right)\)
\(=\frac{\left(2+2\right)\left(2-1\right)}{2\left(2+1\right)}\cdot\frac{\left(3+2\right)\left(3-1\right)}{3\left(3+1\right)}\cdot\ldots\cdot\frac{\left(2022+2\right)\left(2022-1\right)}{2022\left(2022+1\right)}\)
\(=\frac{4\cdot5\cdot\ldots\cdot2024}{3\cdot4\cdot\ldots\cdot2023}\cdot\frac{1\cdot2\cdot\ldots\cdot2021}{2\cdot3\cdot\ldots\cdot2022}=\frac{2024}{3}\cdot\frac{1}{2022}=\frac{1012}{1011\cdot3}=\frac{1012}{3033}\)
b:Sửa đề: \(B=1+\frac12\left(1+2\right)+\frac13\left(1+2+3\right)+\cdots+\frac{1}{100}\left(1+2+\cdots+100\right)\)
\(=1+\frac12\cdot\frac{2\cdot3}{2}+\frac13\cdot\frac{3\cdot4}{2}+\cdots+\frac{1}{100}\cdot\frac{100\cdot101}{2}\)
\(=1+\frac32+\frac42+\cdots+\frac{101}{2}=\frac12\left(2+3+4+\cdots+101\right)\)
\(=\frac12\left(101-2+1\right)\cdot\frac{101+2}{2}=\frac12\cdot100\cdot\frac{101+2}{2}=103\cdot25=2575\)
1/Tính:
A=1/3+2/3^2+3/3^3+4/4^4+...+100/3^100
1.Tính: A=3/5+3/5^4+3/5^7+...+3/5^100
2.Chứng minh rằng: 1/3+2/3^2+3/3^3+4/3^4+5/3^5+...+100/3^100<3/4
3. Tính: S=a+a^2+a^3+a^4+...a^2022
B=a-a^2+a^3-a^4+...-a^2022
giúp mk vs ak :3
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
Tính tổng:
a) A= 1^2*2 + 2^2 *3 + 3^2*4 +...+ 99^2*100
b) B= 1*2^2 + 2*3^2 + 3*4^2 +...+ 99*100^2
c) C= 1^3 + 2^3 + 3^3 +...+ 99^3
1) Tính: A= 2/4.7-3/5.9+2/7.10-3/9.13+..+2/301.304-3/401.405
2) Chứng minh rằng với mọi n thuộc số tự nhiên, n lớn hơn hoặc bằng 2: 3/9.14+3/14.19+...+3/(5n-1).(5n+4)<1/15
3) a) Cho A=9/5^2+9/11^2+9/17^2+...+9/305^2. Chứng minh A<3/4
b) Cho C=4/3+7/3^2+10/3^3+...+3n+1/3^n với số tự nhiên khác 0. Chứng minh rằng C<11/4
4) Tính: a) =1/2+1/2^2+1/2^3+...+1/2^100
b) B=1/3-1/3^2+1/3^3-1/3^4+...+1/3^99-1/3^100
5) So sánh: (1-1/2).(1-1/3).(1-1/4). ... .(1-1/20) với 1/21
các bạn cho mình xin cách giải mấy bài này với
1. tính A= (1+2+3+...+100)(1/3 - 1/5 - 1/7 - 1/9) [ cái này là tử nha ]
1/2 + 1/3 + 1/4 + ... + 1/100 [ cái này là mẫu ]
2 tính B= 1 + 1/2 x (1+2) + 1/3 x (1+2+3) + 1/4 x (1+2+3+4) + ... + 1/16 x (1+2+3+...+16)
3 tính C= 1 + 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2
Bài 1: Tính A=\(1+2+2^2-2^3+2^4-2^5+......+2^{98}+2^{99}+2^{100}\)\(2^{100}\)
Bài 2: Tính D=\(1-3^2+3^3-3^4+3^5+...-3^{100}+3^{101}\)