Giải hệ phương trình:
\(\hept{\begin{cases}x+y+xy=19\\y+z+yz=11\\z+x+xz=14\end{cases}}\)
giải hệ phương trình:
\(\hept{\begin{cases}x+y+z=6\\xy+yz-xz=-1\\x^2+y^2+z^2=14\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2+xy=37\\x^2+z^2+xz=28\\y^2+z^2+yz=19\end{cases}}\)
giải hệ phương trình \(\hept{\begin{cases}x^2+y^2+xy=37\\x^2+z^2+xz=28\\y^2+z^2+yz=19\end{cases}}\)
\(\hept{\begin{cases}x^2+y^2+xy=37\left(1\right)\\x^2+z^2+xz=28\left(2\right)\\y^2+z^2+yz=19\left(3\right)\end{cases}}\)
trừ pt(1) cho pt(2) ta có \(y^2+xy-z^2-xz=9\)<=> \(\left(y-z\right)\left(y+z\right)+x\left(y-z\right)=9\)
<=> \(\left(y-z\right)\left(x+y+z\right)=9\)(4)
trừ pt(2) cho pt(3) ta có \(x^2+xz-y^2-yz=9\)
<=>\(\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=9\)
<=> \(\left(x-y\right)\left(x+y+z\right)=9\)(5)
từ (4) và (5) ==>\(\left(y-z\right)\left(x+y+z\right)=\left(x-y\right)\left(x+y+z\right)\)
mà x+y+z khác 0 ==> \(y-z=x-y\)
==> x+z=2y <=> x+y+z=3y
mà (x-y)(x+y+z)=9 <=> \(\left(x-y\right)3y=9\)
<=> \(\left(x-y\right)y=3\)
<=> \(xy-y^2=3\)
<=>\(xy=y^2+3\)
<=> \(x=y+\frac{3}{y}\)(6)
thay (6) vào pt (1) ta có \(\left(y+\frac{3}{y}\right)^2+y^2+\left(y+\frac{3}{y}\right)y=37\)
<=>\(3y^4-28y^2+9=0\)
đặt \(y^2=t\left(t\ge0\right)\) thì pt trở thành \(3t^2-28t+9=0\)
<=>\(\left(3t-1\right)\left(t-9\right)=0\)
<=> \(\orbr{\begin{cases}t=\frac{1}{3}\\t=9\end{cases}}\)(TMĐK)
ĐẾN ĐÂY CẬU TỰ GIẢI NỐT TÌM x;y;z nhé ( bài hay quá )
Giải hệ phương trình\(\hept{\begin{cases}xy+yz+xz=x^2+y^2+z^2\\x^2+y^2+z^2=3\end{cases}}\)
\(\hept{\begin{cases}\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2+\frac{x^2+y^2+z^2}{3}=0\\x^2+y^2+z^2=3\end{cases}}\)
=>\(\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2=-\frac{3}{2}\) vo lý
=> hệ vô nghiệm
???? Cao Văn Đức !!!!
Bài làm chả có căn cứ J cả?
\(x^2+y^2+z^2=xy+yz+zx\)
\(2\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(y-z\right)^2\ge0\forall z;y\\\left(z-x\right)^2\ge0\forall z;x\end{cases}}\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x;y;z\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\Leftrightarrow x=y=z\Leftrightarrow x^2=y^2=z^2\)
Ta có: \(x^2+y^2+z^2=3\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x^2=y^2=z^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)
giải hệ phương trình:
a)\(\hept{\begin{cases}x^2+y^2+z^2=8\\xy+yz+xz=4\\x+y+z=4\end{cases}}\)
b)\(\hept{\begin{cases}x^4+x^3y+9y=y^3x+x^2y^2\\xy^3-x^4=7\end{cases}}\).
Giải hệ phương trình: \(\hept{\begin{cases}x\left(x+y+z\right)=12-yz\\y\left(x+y+z\right)=15-xz\\z\left(x+y+z\right)=20-xy\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x+yz=2\\y+xz=2\\z+xy=2\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}zx+xy=x^2+2\\xy+yz=y^2+3\\yz+xz=z^2+4\end{cases}}\)
Giải hệ phương trình : \(\hept{\begin{cases}x^2+y^2+z^2=xy+yz+xz\\^{2001}+y^{2001}+z^{2001}=3^{2002}\end{cases}}\)
ta nhân vế đầu cho 2 ta được:
\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
mà \(\left(x-y\right)^2>=0;\left(y-z\right)^2>=0;\left(z-x\right)^2>=0\)
dấu "=" xảy ra khi và chỉ khi \(x=y=z\)
thế vào 2 ta có \(x^{2001}+x^{2001}+x^{2001}=3^{2002}\Leftrightarrow x^{2002}=3^{2002}\Leftrightarrow x=3\)