Chứng minh rằng:
(2+1).(2²+1).(2⁴+1).(2^8+1).(2^16+1)=2³²-1
Chứng minh rằng 1+x+x^2+...+x^31=(1+x)(1+x^2)(1+x^4)(1+x^8)(1+x^16)
\(\left(1-x\right)\left(1+x+x^2+...+x^{31}\right)=1-x^{32}\)
\(\left(1-x\right)\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\)
\(=\left(1-x^2\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\)
\(=\left(1-x^4\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\)
\(=\left(1-x^8\right)\left(1+x^8\right)\left(1+x^{16}\right)\)
\(=\left(1-x^{16}\right)\left(1+x^{16}\right)\)
\(=1-x^{32}\)
Ta có đpcm.
1.Chứng minh rằng a)1/2-1/4+1/8-1/16+1/32-1/64<1/3 b)1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
1. Chứng minh rằng : 1/5 +1/14 +1/28 +1/44 +1/61+ 1/85 +1/91 < 1/2
2. Chứng tỏ rằng : 1/5+1/6+1/7+...+1/16+1/17 < 2
3. Tính: A= [878787/9595953+ (-8787/9595)] * 1234621/5678765
4. So sánh : 10^8+2/10^8-1 ; B= 10^8/10^8-3
A=\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì\(10^8-1>10^8-3\)
\(\Rightarrow\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)
Vậy \(A< B\)
Chứng minh rằng
\(A=\dfrac{8}{1^2.3^2}+\dfrac{16}{3^2.5^2}+\dfrac{24}{5^2.7^2}+...+\dfrac{120}{29^2.31^2}< 1\)
https://olm.vn/hoi-dap/detail/10863149136.html
bài này lần trước mik vừa trả lời lần trước
Chứng minh rằng: 1/2-1/4+1/8-1/16+1/32-1/64 <1/3
Đặt A=1/2−1/4+1/8−1/16+1/32−1/64A
=1/2−1/4+1/8−1/16+1/32−1/64
2A=1−1/2+1/4−1/8+1/16−1/32
2A =1−1/2+1/4−1/8+1/16−1/32
3A=2A+A=1−1/64<1
⇒A<1/3
k cho minh nha
Đặt \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}.\)
\(\Rightarrow2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(\Rightarrow2A+A=\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)\)
\(\Rightarrow3A=1-\frac{1}{64}< 1\)\(\Rightarrow A< \frac{1}{3}\left(đpcm\right)\)
Vậy \(A< \frac{1}{3}.\)
chứng minh rằng 1/2-1/4+1/8-1/16+1/32-1/64<1/3
đặt A=1/2-1/4+1/8-1/16+1/32-1/64
2A=1-1/2+1/4-1/8+1/16-1/32
2A-A=1-1/64 A=63/64
Vì 63/64<1/3
nên 1/2-1/4+1/8-1/16+1/32-1/64<1/3
Vậy 1/2-1/4+1/8-1/16+1/32-1/64<1/3
Chứng minh rằng:
a) 1/2-1/4+1/8-1/16+1/32-1/64<1/3
b) 1/3-2/3^2+3/3^3-3/3^4+...+99/3^99-100/3^100<3/16
chứng minh rằng
1/2-1/4+1/8-1/16+1/32-1/64<1/3
Chứng minh rằng 1/2 - cho 1/4 + 1/8 - cho 1/16 + 1/32 - 1/6 4 <1/3