Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tiểu an Phạm
Xem chi tiết
Hà Phương Trần Thị
Xem chi tiết
Truyen Vu Cong Thanh
Xem chi tiết
Bùi Trần Nhật Thanh
12 tháng 7 2016 lúc 16:30

Đặt 2011=t

\(\Rightarrow T=\sqrt{1+\left(t-1\right)^2+\frac{\left(t-1\right)^2}{t^2}}+\frac{t-1}{t}\)

        \(=\sqrt{\frac{t^2+t^2\left(t-1\right)^2+\left(t-1\right)^2}{t^2}}+\frac{t-1}{t}\)

        \(=\frac{\sqrt{t^2+t^4-2t^3+t^2+t^2-2t+1}+t-1}{t}\)

        \(=\frac{\sqrt{t^4+t^2+1+2t^2-2t^3-2t}+t-1}{t}\)

         \(=\frac{\sqrt{\left(t^2-t+1\right)^2}+t-1}{t}\)

       \(=\frac{t^2-t+1+t-1}{t}=t=2011\)

mà \(2011\in Z\)

nên T là một số nguyên.

hà ngọc ánh
Xem chi tiết
roronoa zoro
Xem chi tiết
ST
14 tháng 1 2018 lúc 14:20

Câu hỏi của Đỗ thị như quỳnh - Toán lớp 7 | Học trực tuyến

Bùi Minh Quân
Xem chi tiết
tran bao trung
Xem chi tiết
Đỗ thị như quỳnh
Xem chi tiết
Kuro Kazuya
27 tháng 12 2016 lúc 20:57

Ta có

\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)

\(=>\frac{x^{2010}}{a^2+b^2+c^2+d^2}+\frac{y^{2010}}{a^2+b^2+c^2+d^2}+\frac{z^{2010}}{a^2+b^2+c^2+d^2}+\frac{t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)

\(=>\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)

\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+y^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\right)+z^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\right)+t^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\right)=0\)

\(Do\left\{\begin{matrix}\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\ne0\end{matrix}\right.\)

\(=>\left\{\begin{matrix}x^{2010}=0\\y^{2010}=0\\z^{2010}=0\\t^{2010}=0\end{matrix}\right.\)

\(=>\left\{\begin{matrix}x=0\\y=0\\z=0\\t=0\end{matrix}\right.\)

Ta có

\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\)

\(=>T=0^{2011}+0^{2011}+0^{2011}+0^{2011}\\ T=0+0+0+0\\ T=0\)

Đào Thị An Na
7 tháng 3 2018 lúc 21:53

(x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.

Dung Nguyen
Xem chi tiết