(2a+1a3√−1−a√a+a√+1).(a−−√−1)(2a+1a3−1−aa+a+1).(a−1)
với
a≥0;a≠1
Cho biểu thức A = a3+2a2−1a3+2a2+2a+1a3+2a2−1a3+2a2+2a+1
a) Rút gọn biểu thức.
b) CMR nếu a nguyên thì A tối giản.
Chứng minh các bất đẳng thức sau:
a2 + b2⩾1/2 với a+b ⩾1
a3+b3⩾1/4 với a+b ⩾1
Chứng minh các bất đẳng thức sau:
a2 + b2⩾1/2 với a+b ⩾1
a3+b3⩾1/4 với a+b ⩾1
j vậy bẹn, đây là sinh lớp 7 mak :v ?
Cho hai số thực a , b thỏa điều kiện ab = 1, a +b ¹ 0 . Tính giá trị của biểu thức:
P = 1 ( a + b ) 3 ( 1 a 3 + 1 b 3 ) + 3 ( a + b ) 4 ( 1 a 2 + 1 b 2 ) + 6 ( a + b ) 5 ( 1 a + 1 b )
Với ab = 1 , a + b ¹ 0, ta có:
P = a 3 + b 3 ( a + b ) 3 ( a b ) 3 + 3 ( a 2 + b 2 ) ( a + b ) 4 ( a b ) 2 + 6 ( a + b ) ( a + b ) 5 ( a b ) = a 3 + b 3 ( a + b ) 3 + 3 ( a 2 + b 2 ) ( a + b ) 4 + 6 ( a + b ) ( a + b ) 5 = a 2 + b 2 − 1 ( a + b ) 2 + 3 ( a 2 + b 2 ) ( a + b ) 4 + 6 ( a + b ) 4 = ( a 2 + b 2 − 1 ) ( a + b ) 2 + 3 ( a 2 + b 2 ) + 6 ( a + b ) 4 = ( a 2 + b 2 − 1 ) ( a 2 + b 2 + 2 ) + 3 ( a 2 + b 2 ) + 6 ( a + b ) 4 = ( a 2 + b 2 ) 2 + 4 ( a 2 + b 2 ) + 4 ( a + b ) 4 = ( a 2 + b 2 + 2 ) 2 ( a + b ) 4 = ( a 2 + b 2 + 2 a b ) 2 ( a + b ) 4 = ( a + b ) 2 2 ( a + b ) 4 = 1
Vậy P = 1, với ab = 1 , a+b ¹ 0.
Tìm a để giá trị của mỗi phân thức sau được xác định:
a) a 2 − 1 9 a 2 − 16 ; b) 2 a + 1 a 2 − 6 a + 9 ;
c) 3 a − 4 2 a 2 + 3 a ; d) a + 1 a 3 − 4 a 2 + 3 a .
a) a ≠ ± 4 3 b) a ≠ 3
c) a ≠ 0, a ≠ - 3 2 d) a ≠ 0, a ≠ 1, a ≠ 3
Chứng minh các biểu thức sau có giá trị không phụ thuộc vào biến:
a) A = a − 3 a a 2 + 2 a + 1 a − 2 a + 4 a với a ≠ 0 và a 2 − 3 ≠ 0 ;
b) B = 2 a − 1 − 2 a 3 − 2 a a 2 + 1 . a a 2 − 2 a + 1 − 1 a 2 − 1 với a ≠ ± 1 .
Cho biểu thức
A = 1 - a - 3 a a - 9 a - 2 a + 3 + a - 3 2 - a - 9 - a a + a - 6
Tìm giá trị của a để A - 1/A = 0?
A. a = 5
B. a = 3
C. a = 36
D. a = 25
( a-1)x +2a +1 < 0 với a>1
(2a+1)x -1 -a >0 với a<-1/2