Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Lan
Xem chi tiết
Nguyễn Hoài Phương
31 tháng 3 2018 lúc 16:30

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

Trương Trọng Tiến
Xem chi tiết
tran huu dinh
Xem chi tiết
Hoàng Thị Lan Hương
7 tháng 7 2017 lúc 14:58

c. \(\hept{\begin{cases}xy-\frac{x}{y}=9,6\left(1\right)\\xy-\frac{y}{x}=7,5\left(2\right)\end{cases}}\)

Lấy (1)-(2) ta có \(\frac{y}{x}-\frac{x}{y}=\frac{21}{10}\)\(\Rightarrow\)\(\frac{y^2-x^2}{xy}=\frac{21}{10}\Rightarrow10y^2-21xy-10x^2=0\Rightarrow\left(5y+2x\right)\left(2y-5x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5y+2x=0\\2y-5x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{2}y\\x=\frac{2}{5}y\end{cases}}}\)

Với \(x=-\frac{5}{2}y\Rightarrow\left(-\frac{5}{2}y\right)y-\frac{-\frac{5}{2}y}{y}=9,6\Rightarrow-\frac{5}{2}y^2=\frac{71}{10}\Rightarrow y^2=-\frac{71}{25}\left(l\right)\)

Với \(x=\frac{2}{5}y\Rightarrow\frac{2}{5}y.y-\frac{\frac{2}{5}y}{y}=9,6\Rightarrow\frac{2}{5}y^2=10\Rightarrow y^2=25\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)

Vậy \(\left(x,y\right)=\left(2,5\right);\left(-2,-5\right)\)

Rau
7 tháng 7 2017 lúc 20:35

Sao ý b) xấu thế :v

hoàng thiện nguyễn
18 tháng 8 2020 lúc 9:30

jyqhywgvxyg

Khách vãng lai đã xóa
Lê Tài Bảo Châu
Xem chi tiết
Khanh Nguyễn Ngọc
10 tháng 9 2020 lúc 8:03

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

Khách vãng lai đã xóa
Linh_Chi_chimte
Xem chi tiết
Blue Moon
Xem chi tiết
Nguyễn Linh Chi
19 tháng 11 2018 lúc 22:37

Phương trình trên <=> \(\left(x^2-4x+4\right)-\left(4y^2-4y+1\right)=0\Leftrightarrow\left(x-2\right)^2-\left(2y-1\right)^2=0\)

\(\Leftrightarrow\left(x-2-2y+1\right)\left(x-2+2y-1\right)=0\)

Em làm tiếp nhé! 

Nguyễn Anh Dũng An
Xem chi tiết
Nguyễn Linh Chi
2 tháng 12 2019 lúc 15:11

\(\hept{\begin{cases}2x^2-y^3+2xy+2xy^2=3\left(1\right)\\x^2-y^3+xy=1\left(2\right)\end{cases}}\)

(2) <=> \(3x^2-3y^3+3xy=3\left(3\right)\)

Lấy (3) - (1):

\(x^2-2y^3+xy-2xy^2=0\)

<=> \(x\left(x+y\right)-2y^2\left(x+y\right)=0\)

<=> \(\left(x+y\right)\left(x-2y^2\right)=0\)

<=> \(\orbr{\begin{cases}x=-y\\x=2y^2\ge0\left(loại\right)\end{cases}}\)

Với x = -y thế vào (2) ta có: \(y^2-y^3-y^2=1\Leftrightarrow-y^3=1\Leftrightarrow y=-1\)

khi đó: x = 1

Vậy ( 1; -1 ) là nghiệm hệ phương trình.

Khách vãng lai đã xóa
Trần Hippo
Xem chi tiết
vũ tiền châu
21 tháng 7 2018 lúc 21:07

1) Ta có pt \(\Leftrightarrow\sqrt{x+1}+2x\sqrt{x+3}=2x+\sqrt{\left(x+1\right)\left(x+3\right)}\)

Đặt \(\sqrt{x+1}=a;\sqrt{x+3}=b\left(b>a\ge0\right)\)

Ta có pt \(\Leftrightarrow a+2xb=2x+ab\Leftrightarrow a\left(1-b\right)-2x\left(1-b\right)=0\Leftrightarrow\left(a-2x\right)\left(1-b\right)=0\)

Đến đây tự thay a,b vào rồi giải pt bậc 2 nhá !

phạm minh tâm
21 tháng 7 2018 lúc 21:31

b, trừ từng vế của 2 pt trong hệ ta có pt hệ quả có nhân tử chung là x-y

Nguyễn Tất Đạt
Xem chi tiết
alibaba nguyễn
4 tháng 2 2019 lúc 6:31

Rút y từ phương trình đầu thế vô phương trình dưới rồi quy đồng lên được. 

(x² + 5x + 1)² = 0

Incursion_03
4 tháng 2 2019 lúc 8:41

A ali : em có cách khác :D

Cộng 2 vế của 2 pt trên lại với nhau ta được

\(x^2-2xy+x-2y+3+y^2-x^2+2xy+2x-2=0\)

\(\Leftrightarrow y^2-2y+3x+1=0\)

\(\Leftrightarrow\left(y-1\right)^2=-3x\)

\(\Leftrightarrow\hept{\begin{cases}x\le0\\y=\sqrt{-3x}+1\end{cases}\left(h\right)\hept{\begin{cases}x\le0\\y=-\sqrt{-3x}+1\end{cases}}}\)

Đến đây thế vào pt (2) sẽ tìm đc x 

Nói chung làm cách a ali sẽ dễ hơn . cách của tớ cũng là 1 cách nhưng không được hay cho lắm :V

tth
8 tháng 2 2019 lúc 20:39

em quy đồng và khử mẫu lên nó ra thế này:

Pt (1) tương đương: \(x^2+x+3=2y\left(x+1\right)\Leftrightarrow y=\frac{x^2+x+3}{2\left(x+1\right)}\)

Thay vào pt (2) ta có: \(\left[\frac{x^2+x+3}{2\left(x+1\right)}\right]^2-x^2+2x.\frac{x^2+x+3}{2\left(x+1\right)}+2x-2=0\)

\(\Leftrightarrow\frac{\left(x^2+x+3\right)^2}{4\left(x+1\right)^2}-x^2+\frac{x\left(x^2+x+3\right)}{x+1}+2x-2=0\)

\(\Leftrightarrow\frac{\left(x^2+x+3\right)^2+4x\left(x^2+x+3\right)\left(x+1\right)-4\left(x+1\right)^2x}{4\left(x+1\right)^2}=0\)

\(\Leftrightarrow\left(x^2+x+3\right)^2+4x\left(x^2+x+3\right)\left(x+1\right)-4\left(x+1\right)^2x=0\)

thì khai triển tiếp hai sao ạ?