Tìm x \(\varepsilon\) Z biết: \(\frac{1}{-2}\)< \(\frac{x}{2}\)< 0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1) Tìm x,y \(\varepsilon\)Z
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=\frac{2}{3}\)
2) Tìm x \(\varepsilon\)Z để A \(\varepsilon\)Z
c)A=\(\frac{x+1}{x^2+1}\)
d)A=\(\frac{x^3-x^2+2}{x-1}\)
P=(\(\frac{2x}{2x^2-5x+3}\)-\(\frac{5}{2x-3}\)) : (3+ \(\frac{2}{1-x}\))
a, Rút gọn P
b, P=? khi | 2x- 1|=3
c, x=? để P \(\varepsilon\)Z
d, Tìm x\(\varepsilon\)Z để P\(\varepsilon\)Z
\(P=\left(\frac{2x}{2x^2-5x+2}-\frac{5}{2x-3}\right):\left(3+\frac{2}{1-x}\right) \)(dk x khac 3/2 ; x khac 1)
\(P=\left(\frac{2x}{\left(2x-3\right)\left(x-1\right)}-\frac{5\left(x-1\right)}{\left(2x+3\right)\left(x-1\right)}\right):\left(\frac{3\left(x-1\right)}{x-1}-\frac{2}{x-1}\right)\)
\(P=\frac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\frac{3x-3-2}{x-1}\)
\(P=\frac{-\left(3x-5\right)}{\left(2x-3\right)\left(x-1\right)}\cdot\frac{x-1}{3x-5}\)
\(P=\frac{-1}{2x-3}\)
b) TC: \(|2x-1|=3\)
TH1) \(|2x-1|=2x-1\)khi \(x\ge\frac{1}{2}\)
2x-1=3 suy ra x=2 ( thoa dk)
TH2) \(|2x-1|=-2x+1\)khi \(x< \frac{1}{2}\)
-2x+1=3 suy ra x=-1 ( thoa dk)
khi x= 2 thi P=-1
khi x= -1 thi P=1/5
c) de P thuoc Z thi \(-\frac{1}{2x-3}\)thuoc Z
suy ra \(\frac{1}{3-2x}\)thuoc Z
suy ra 3-2x thuoc \(Ư\left(1\right)\in\left\{\pm1\right\}\)
khi 3-2x=1 thi x= 1 (ko thoa dk x khac 1)
khi 3-2x=-1 thi x=2(thoa dk)
vay x=2 thi P thuoc Z
d) giai tg tu cau c
Cho biểu thức sau: Q=\(\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\)
1/Tìm điều kiện để Q có nghĩa và rút gọn Q
2/Tìm x để Q<=-3
3/Tìm x\(\varepsilon Z\)để Q\(\varepsilon Z\)
\(\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\\ =\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)\cdot\left(3\sqrt{x}+14\right)}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}+14}{5\sqrt{x}-1}\)
b) để Q = -3 thì \(\dfrac{3\sqrt{x}+14}{5\sqrt{x}-1}=-3\)
quy đồng và khử mẫu ta được:
\(3\sqrt{x}+14=-3\cdot\left(5\sqrt{x}-1\right)\\ 3\sqrt{x}+14=-15\sqrt{x}+3\\ 18\sqrt{x}=-11\\ \sqrt{x}=-\dfrac{11}{18}\)
vậy không có giá trị x nào để Q = -3
Tìm x\(\varepsilon\)Z sao cho \(\frac{x^2+2x-1}{x-1}\)\(\varepsilon\) Z
AI LÀM ĐƯỢC MÌNH TICK CHO
Đặt \(A=\frac{x^2+2x-1}{x-1}\)
Ta có:\(A=\frac{x^2+2x-1}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)
Vậy để A nguyên thì x thỏa mãn mõi số nguyên
(đkxđ x khác 1)
\(\frac{x^2+2x-1}{x-1}=\frac{\left(x^2-1\right)+\left(2x-2\right)+2}{x-1}\)=\(\frac{\left(x-1\right)\left(x+1\right)+2\left(x-1\right)+2}{x-1}\)=\(x+1+2+\frac{2}{x-1}\)
=\(x+3+\frac{2}{x-1}\)
Để biểu thức nguyên=>\(\frac{2}{x-1}\in Z\)<=>\(2⋮x-1=>x-1\inƯ=\){1,2,-1,-2}
=>x\(\in\){2,3,0,-1}
A=\((1+\frac{x^2}{x^2+1})\): \((\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1})\)
a, Rút gọn A
b, A=? khi x=\(\frac{-1}{2}\)
c, x=? đểA<1
d, Tìm x\(\varepsilon\)Z để A \(\varepsilon Z\)
tìm x,y,z \(\varepsilon\) Q biết:
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x+y+z\right|\)=0
A=( 1+\(\frac{x^2}{x^2+1}\)) :( \(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\))
a, rút gọn A
b, A=? khi x= \(\frac{-1}{2}\)
c, x=? để A<1
d, Tìm x\(\varepsilon\)Z để A \(\varepsilon\)Z
A= (1+\(\frac{x^2}{X^2+1}\)) : (\(\frac{1}{x-1}\)- \(\frac{2x}{x^3+x-x^2-1}\))
a, Rút gọn A
b, A=? khi x= \(\frac{-1}{2}\)
c, x=? để A< 1
d, Tìm x\(\varepsilon\)Z để A\(\varepsilon\)Z
làm đc câu nào hay câu đây, càng nhiều càng tốt
cảm ơn nha
a. \(A=\left(\frac{2x^2+1}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right)\)
\(\Rightarrow A=\frac{2x^2+1}{x^2+1}:\left(\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\right)\)
\(\Rightarrow A=\frac{2x^2+1}{x^2+1}:\left(\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}\right)\)
\(\Rightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x-1}{x^2+1}\)
\(\Rightarrow A=\frac{2x^2+1}{x^2+1}\cdot\frac{x^2+1}{x-1}\)\(\Rightarrow A=\frac{2x^2+1}{x-1}=\left(2x+2\right)+\frac{3}{x-1}\)