CTR 6x+11y chia hết cho 31 thì x+7y chia hết cho 31. điều ngược lại có đúng ko
chõ,y thuộc Z chứng tỏ rằng nếu 6x+11y chia hết cho 31 thì x+7y chia hết cho 31.
điều ngược lại có đúng ko?
cho x,y là các số nguyên. CMR: nếu 6x+11y chia hết cho 31 thì x+7y chia hết cho 31
điều ngược lại thì có đúng không
#)Giải :
Ta có : \(6x+11y⋮31\)
\(\Rightarrow6x+11y+31y⋮31\)
\(\Rightarrow6x+42y⋮31\)
\(\Rightarrow6\left(x+7y\right)⋮31\)
Mà (6;31) = 1 \(\Rightarrow\)y + 7y chia hết cho 31 (đpcm)
Ngược lại thì tương tự thui bạn, và điểu này thì vẫn đúng nhé !
bạn có thể chứng minh điều ngược lại được không ạ
cho x;y là các số nguyên . Chứng tỏ rằng 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31 . Điều ngược lại có đúng không ?
ta có: 31x+186y chia hết 31
6x+11y chia hết 31
=> 31x-6x+186y-11y chia hết 31
=>25x+175y chia hết 31
=>25(x+7y) chia hết 31
mà 25 ko chia hết 31
=> x+7y chia hết31
Cho x,y là số nguyên. Chứng tỏ rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31. Điều ngược lại có đúng kô?
6x + 11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (31y chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6.(x + 7y) chia hết cho 31
Mà (6; 31) = 1
=> x + 7y chia hết cho 31
Điều ngược lại vẫn đúng (Nhân x + 7y cho 6).
6x+11y chi hết cho 31
=> 6x +42y chia hết cho 31
6(x+7y) chia hết cho 31
Vậy x+7y cũng chia hết cho31 và điều ngược lại cũng đúng.
Ta có: 6x+11y chia hết cho 31
=> 6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Do (6,31)=1 nên x+7y chia hết cho 31
Tương tự với x+7y thì ta nhân với 6, ngược lại với phần trên nha
ủng hộ mình
Cho x , y là các số nguyên . Chứng tỏ rằng nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31 . Điều ngược lại có đúng không
Xết số 6.( x + 7y ) = ( 6x + 11y ) +31y
Từ đẳng thức trên suy ra : nếu ( 6x + 11y ) chia hết cho 31 thì ( x + 7y ) chia hết cho 31 .
Điều ngược lại cũng đúng . ủng hộ mik nhé
Cho x,y là các số nguyên .Chứng tỏ rằng nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31 . Điều ngược lại có đúng không ?
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
Vì 6x+11y chia hết cho 31 nên 5(6x+11y)=30x +55y chia hết cho 31
=>(30x+55y) + (x+7y) chia hết cho 31
=>31x +62y chia hết cho 31
Mình chỉ giúp bạn đến đây thôi ; phần còn lại thì bạn tự làm nhé ! Nếu suy nghĩ mãi ko ra thì mình sẽ giúp nốt cho.
bạn phan ngọc thạch chưa nói điều ngược lại
Cho x,y thuộc Z. CMR nếu 6x+11y chia hết cho 31 thì x+ 7y cũng chia hết cho 31. Ngược lại x+7y chia hết cho 31 thì 6x+ 11y cũng chia hết cho 31
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
Chờ x,y là các số nguyên.Chứng tỏ rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31.Điều ngược lại có đúng không?
Cho x,y là các số nguyên . Chứng tỏ rằng nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31 . Điều ngược lại có đúng không ?
6x + 11y+31 y chia hết cho 31
Suy ra 6x+ 42 y chia hết cho 31
6(x+7y) chia hết cho 31
Vậy x+7y cũng chia hết cho 31 và điều ngược lại cũng đúng
Nếu thấy đúng cho mình cái tick hi