Cho\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\) và\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\) Tính giá trị của biểu thức A=\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)và\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)Tính giá trị của biểu thức: \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}\)
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)và\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)Tính giá trị của biểu thức: \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}\)
Cho các số a,b,c,x,y,z khác 0 và thỏa mãn \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
Tính giá trị biểu thức: \(A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{xyc+yza+zxb}{abc}=1\)
Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\frac{yza+zxb+xyc}{xyz}=0\)
\(\Rightarrow yza+zxb+xyc=0\)
\(\Rightarrow A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\).Tính giá trị biểu thức \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}\).
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\left(1\right)\)và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
Tính giá trị biểu thức \(A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=0\)
b, Tính \(\frac{ab}{a^2+b^2+c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)
\(\Rightarrow\frac{bcx+acy+abz}{abc}=0\)
\(\Rightarrow bcx+acy+abz=0\)
Lại có:\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{bcx+acy+abz}{xyz}=4\)(bình phương hai vế)
\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4\)(Vì \(bcx+acy+abz=0\))
Từ (1) \(\Rightarrow bcx+acy+abz=0\)
Gọi \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\left(2\right)\)
Từ (2) \(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{ab}{xy}+\frac{ac}{xz}+\frac{bc}{yz}\right)=0\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=4-\left(\frac{abz+acy+bcx}{xyz}\right)\)
\(=4\)
\(b,\frac{ab}{a^2+b^2+c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
Từ \(a+b+c=0\Rightarrow a+b=-c\Rightarrow a^2+b^2-c^2=-2ab\)
Tương tự \(b^2+c^2-a^2=-2bc\)và \(c^2+a^2-b^2=-2ac\)
\(\Rightarrow\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=\frac{1}{-2}+\frac{1}{-2}+\frac{1}{-2}\)
\(=-\frac{3}{2}\)
Cho x, y, z khác 0 và \(A=\frac{y}{z}+\frac{z}{y},B=\frac{x}{z}+\frac{z}{x},C=\frac{x}{y}+\frac{y}{x}\)
Tính giá trị biểu thức A2 + B2 + C2 - ABC
cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
tính giá trị biểu thức: A=\(\left(\frac{a}{x}\right)^2+\left(\frac{b}{y}\right)^2+\left(\frac{c}{z}\right)^2\)
a) Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
Tính giá trị của biểu thức \(A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=0\)
b) Tính \(B=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
Cho
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\) ; \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
Tính giá trị của biểu thức
\(A=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\) =>\(\frac{xbc+yac+zab}{abc}=0\)=>\(xbc+yac+zab=0\)(1)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)=>\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=4\)<=>\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2\left(\frac{ab}{xy}+\frac{bc}{yz}+\frac{ac}{xz}\right)=4\)
<=>\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2\left(\frac{abz+bcx+acy}{xyz}\right)=4\)mà abz+bcx+acy=0 ( từ 1) nên \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4\)
Nhớ . hehe ^_^
=>\(xbc+yac+zab=0\)