Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)và\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)Tính giá trị của biểu thức: \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}\)
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)và\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)Tính giá trị của biểu thức: \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}\)
Cho các số a,b,c,x,y,z khác 0 và thỏa mãn \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
Tính giá trị biểu thức: \(A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\).Tính giá trị biểu thức \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}\).
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\left(1\right)\)và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
Tính giá trị biểu thức \(A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=0\)
b, Tính \(\frac{ab}{a^2+b^2+c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
Cho x, y, z khác 0 và \(A=\frac{y}{z}+\frac{z}{y},B=\frac{x}{z}+\frac{z}{x},C=\frac{x}{y}+\frac{y}{x}\)
Tính giá trị biểu thức A2 + B2 + C2 - ABC
cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
tính giá trị biểu thức: A=\(\left(\frac{a}{x}\right)^2+\left(\frac{b}{y}\right)^2+\left(\frac{c}{z}\right)^2\)
a) Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
Tính giá trị của biểu thức \(A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=0\)
b) Tính \(B=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
Cho
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\) ; \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
Tính giá trị của biểu thức
\(A=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}\)