Tìm các cặp số hữu tỉ (x;y) thỏa mãn 3x-2y và \(\frac{1}{3x}\)- \(\frac{1}{2y}\) đồng thời là hai số nguyên dương
Giúp mình với ạ
Bài 4.
Tìm tất cả các số hữu tỉ x,y thỏa mãn (a) x+3y−x√5 = y√5+7 (b) 5x+y−(2x−1)√7 = y√7+2.
Tìm tất cả các cặp số hữu tỉ (x,y) thỏa mãn (a) x+y+61 = 10√x+12√y (b) 2x+y+4 = 2√x(√y+2)
chắc bạn đang học lớp 7 nên mik sẽ giải kiểu lớp 7 nha
mỗi câu mik chia làm 2 bài nhé!
Bài 1. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)
(a) \(x + 3 y - x \sqrt{5} = y \sqrt{5} + 7\)
\(\Rightarrow - \left(\right. x + y \left.\right) \sqrt{5} = 7 - x - 3 y\).
Vế trái vô tỉ (nếu \(x + y \neq 0\)), vế phải hữu tỉ.
\(\Rightarrow x + y = 0 , \textrm{ }\textrm{ } 7 - x - 3 y = 0\).
\(\Rightarrow x = - y , \textrm{ }\textrm{ } 7 + y - 3 y = 0 \Rightarrow y = \frac{7}{2} , x = - \frac{7}{2}\).
Đáp số: \(\left(\right. - \frac{7}{2} , \frac{7}{2} \left.\right)\).
(b) \(5 x + y - \left(\right. 2 x - 1 \left.\right) \sqrt{7} = y \sqrt{7} + 2\).
\(\Rightarrow - \left(\right. 2 x + y - 1 \left.\right) \sqrt{7} = 2 - 5 x - y\).
\(\Rightarrow 2 x + y - 1 = 0 , \textrm{ }\textrm{ } 2 - 5 x - y = 0\).
Giải hệ:
\(\left{\right. 2 x + y = 1 \\ 5 x + y = 2 \Rightarrow x = \frac{1}{3} , y = \frac{1}{3} .\)
Đáp số: \(\left(\right. \frac{1}{3} , \frac{1}{3} \left.\right)\).
Bài 2. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)(a) \(x + y + 61 = 10 \sqrt{x} + 12 \sqrt{y}\).
Đặt \(x = a^{2} , y = b^{2}\).
\(\Rightarrow a^{2} + b^{2} + 61 = 10 a + 12 b\).
Thử \(a = 5 , b = 6\): \(25 + 36 + 61 = 122 , \textrm{ }\textrm{ } 10 \cdot 5 + 12 \cdot 6 = 122\).
Đáp số: \(\left(\right. 25 , 36 \left.\right)\).
(b) \(2 x + y + 4 = 2 \sqrt{x} \left(\right. \sqrt{y} + 2 \left.\right)\).
Đặt \(x = a^{2} , y = b^{2}\).
\(\Rightarrow 2 a^{2} + b^{2} + 4 = 2 a b + 4 a\).
\(\Rightarrow \left(\right. a - b \left.\right)^{2} + 2 \left(\right. a - 2 \left.\right) = 0\).
\(\Rightarrow a = 2 , b = 2\).
Đáp số: \(\left(\right. 4 , 4 \left.\right)\).
👉 Vậy:
Bài 1(a): \(\left(\right. - 7 / 2 , 7 / 2 \left.\right)\).Bài 1(b): \(\left(\right. 1 / 3 , 1 / 3 \left.\right)\).Bài 2(a): \(\left(\right. 25 , 36 \left.\right)\).Bài 2(b): \(\left(\right. 4 , 4 \left.\right)\).Tìm các cặp số hữu tỉ (x,y) sao cho x+y và \(\frac{1}{x}+\frac{1}{y}\) đều là các số nguyên
số các cặp số hữu tỉ(x,y)Tm x+y+xy=3
x+y+xy=3
<=>x+xy+y=3
<=>x(1+y)+y+1=4
<=>(x+1)(y+1)=4
Lap bang ta tim dc 6 cap x;y thoa man de bai
tìm tất cả các cặp số hữu tỉ x,y có dạng x=1/b , y=c/3 ; b,c thuộc Z , b khác không sao cho /x/+/y/=1
Tìm:
a/ 1 cặp số vô tỉ dương mà tổng là 1 số hữu tỉ
b/ 1 cặp số vô tỉ dương mà tích là 1 số hữu tỉ
a/ Có. Ví dụ: (3 - √3) và (2 + √3) là hai số vô tỉ dương, nhưng (3 - √3) + (2 + √3) = 5 là một số hữu tỉ.
1. Tìm các cặp số hữu tỉ (x,y) thỏa mãn : x+y và 1/x+1/y đồng thời là hai số nguyên dương
2.Tổng các bình phương của 3 số tự nhiên là 2596. Biết tỉ số giữa số thứ nhất và số thứ hai là 2/3, tỉ số giữa số thứ hai và số thứ ba là 5/6. Tìm 3 số đó
Tìm cặp số hữu tỉ x,y biết:
x+y=x.y=x:y
Ta có: x+y=x.y
Chia hêt vế cho y ta được:
\(\frac{x+y}{y}=\frac{x.y}{y}\)
=>\(\frac{x}{y}+1=x\)
=>x:y+1=x
Mà x:y=x+y nên:
x+y+1=x
=>y=-1
=> x-1=x.(-1)
=>2x=1
=>x=1/2
Vậy x=1/2 ; y=-1
Ta có: (x+y)2=x2+y2+2xy
<=>(a+b)2=a2+b2+2xy
<=>a2+b2+2ab=a2+b2+2xy
<=>xy=ab
Suy ra: x3+y3=(x+y)(x2+y2-xy)=(a+b)(a2+b2-ab)=a3+b3
=>dpcm
Ta có: (x+y)2=x2+y2+2xy
<=>(a+b)2=a2+b2+2xy
<=>a2+b2+2ab=a2+b2+2xy
<=>xy=ab
Suy ra: x3+y3=(x+y)(x2+y2-xy)=(a+b)(a2+b2-ab)=a3+b3
=>dpcm
Cho số hữu tỉ \(x=\frac{3}{-7}\)
a) Tìm các số hữu tỉ y, z bằng số hữu tỉ x mà có mẫu theo thứ tự là 35; -42.
b) Tìm số hữu tỉ bằng số hữu tỉ x mà có tổng của tử và mẫu là -8
c) Tìm số hữu tỉ bằng số hữu tỉ x mà có hiệu của tử với mẫu là 30.
số các cặp số hữu tỉ (x,y,z) thỏa mãn: x(x+y+z)=4; y(x+y+z)=6; z(x+y+z)=6
ta có:x(x+y+z)=4
y(x+y+z)=6
z(x+y+z)=6
Cộng vế theo vế ,được:(x+y+z)^2=16 suy ra:x+y+z=4 hoặc -4
TH1:x+y+z=4
mà x(x+y+z)=4 suy ra x=1
y(x+y+z)=6 suy ra y=6/4=3/2 suy ra z=3/2
TH2:x+y+z=-4
tương tự ta đc:x=-1,y=z=-3/2
Hãy tìm tất cả các cặp số hữu tỉ đối nhau có mẫu số là 7, nằm giữa -1/3 và 1/2.
các cặp số là:-1/7va1/7;-2/7va2/7
(chắc chắn 100 phần trăm)